

Development of Nano-Structure Barium Titanate Composites with Advanced Properties

A Thesis

Submitted to Physics Department, University Collage of Women for Arts, Science, and Education, Ain Shams University For the Ph.D. Degree in Physics (Solid State Physics)

By

Ibrahim Mohamed Mohamed Moussa

(M.Sc. Physics 2003, Assistant Researcher, Solid State Physics Department, National Research Center)

Supervision Committee

Prof. Dr.

Hamdia Abd El-Hamid Zayed

Prof. of Solid State Physics, Physics Department, University Collage of Women for Arts, Science, and Education, Ain Shams University

Prof. Dr. Ahmed Mahmoud Ghoniem

Prof. of Polymer Physics, Department of Microwaves physics and Dielectrics, Physics Division, National Research Center

Prof. Dr. Hassan Hassan Afify

Prof. of Solid State Physics, Solid State Physics Department, Physics Division, National Research Center

Prof. Dr. Inas Kamal Battisha

Prof. of Solid State Physics, Solid State Physics Department, Physics Division National Research Center

Approval Sheet

Title of the thesis: Development of Nano-Structure Barium Titanate Composites with Advanced Properties

Submitted by: Ibrahim Mohamed Mohamed Moussa

Supervision Committee

Name: signature

Prof. Dr. Hamdia Abd El-Hamid Zayed

Physics Department, University Collage of Women for Arts, Science, and Education, Ain Shams University

Prof. Dr. Hassan Hassan Afify

Solid State Physics Department, National Research Center

Prof. Dr. Ahmed Mahmoud Ghoniem

Department of Microwaves Physics and Dielectrics , National Research Center

Prof. Dr. Inas Kamal Battisha

Solid State Physics Department, National Research Center

Date of Research: / / 2012

Approval Stamp: Date of Approval: / / 2012

Approval of Faculty Council: Approval of University Council:

/ / 2012 / / 2012

Name of the student: Ibrahim Mohamed Mohamed Moussa

Title of thesis: Development of Nano-Structure Barium

Titanate Composites with Advanced

Properties.

Scientific degree: Doctor of philosophy of science in

(Solid State Physics).

Department: Physics Department

Name of Faculty: University Collage of Women for Arts,

Science, and Education

University: Ain Shams University

B.SC. graduation date: 1997

M. SC. graduation date: 2003

Ph. D. graduation date: 2012

CONTENTS

CONTENTS

	Page
Table of Contents	i
List of Tables	iv
List of Figures	vi
Acknowledgement	xvi
Abstract	xvii
Summary	xviii
Chapter 1 : Introduction and Literature Survey	
1.1 Introduction	1
1.2 Literature Survey	3
1.2.1 Single phase magnetoelectric Materials	3
1.2.2 Magnetoelectric composites	4
1.2.2.1 Laminated composite	5
1.2.2.2 Magnetoelectric Nanostructures	8
1.2.2.3 Sintered particulate composite	10
1.2.2.4 Problems and shortcoming of Magnetoelectric	12
Composite	
1.3 Aim of the work	14
Chapter 2: Theoretical Background	
2.1 X-ray Powder diffraction pattern	15
2.1.1 Position of diffraction Peaks	15
2.1.2 Shapes of powder diffraction peaks	16
2.1.3 Peak asymmetry	20
2.1.4 Rietveld Refinement	21
2.2 Structure and properties of barium titanate	23
2.2.1 Perovskite structure	23
2.2.2 Dielectric constant and polarization	26
2.2.2.1 Mechanisms of polarization	27
2.2.2.2 AC Dielectric Properties	30
2.3 Structure and properties of Cobalt Ferrite	31
2.3.1 Spinel structure	31
2.3.2 Magnetic properties of spinel ferrites	33
2.3.2.1 Magnetic Ordering	35
2.3.2.2 Exchange Interaction	37
2.3.2.3 Hysteresis In magnetic Materials	41

	Page
2.3.2.4 Domain Theory	42
2.3.2.5 Magnetic anisotropy	46
2.3.2.6 Superparamagnetism	49
2.4 Composite Materials	51
2.4.1 Properties of composite	52
2.4.1.1 Sum property	52
2.4.1.2 Product property	52
2.4.1.3 Combination property	53
2.4.2 Connectivity of composite	53
Chapter 3: Experimental Techniques	
3.1 Preparation of Powder Materials	54
3.1.1 Preparation of pure Cobalt ferrite phase	54
3.1.2 Preparation of pure barium titanate phase	55
3.1.3 Preparation of Magnetoelectric (ME) composites	56
3.2 Characterization of Samples	57
3.2.1 X-Ray Diffraction (XRD) Technique	57
3.2.1.1 Rietveld analysis of the XRD patterns	58
3.2.2 High Resolution Transmission Electron Microscope	59
3.2.3 Magnetic Measurements	60
3.2.4 Dielectric and Magnetocapacitance Measurements	61
Chapter 4 : Results and Discussion (Part I)	63
4.1 X-Ray diffraction and Rietveld analysis	03
4.1.1 Phase identification	63
4.1.2 Crystal structure refinement with Rietveld method	65
4.2 HRTEM micrographs	78
4.3 Magnetic properties	81
4.4 Dielectric Properties of Magnetoelectric composites	97
4.4.1 Zero field dielectric behavior	97
4.4.2 Dielectric behavior under the effect of Magnetic field	103
4.4.3 Dielectric behavior after removing Magnetic field	113
Chapter 5: Results and Discussion (Part II)	
5.1 X-Ray diffraction and Rietveld analysis	117
5.1.1 Phase identification	117
5.1.2 Crystal structure refinement with Rietveld method	119
5.2 H.R.TEM micrographs	129
5.3 Magnetic properties	132

	Page
5.4 Dielectric Properties of Magnetoelectric composites	147
5.4.1 Zero field dielectric behavior	147
5.4.2 Dielectric behavior under the effect of Magnetic field	152
5.4.3 Dielectric behavior after removing Magnetic field	159
5.5 Effect of preparation method on physical properties of ME Composites	161
5.5.1 the effect of preparation on structure	161
5.5.2 The effect of preparation on magnetic properties	164
5.5.3 The effect of preparation on dielectric properties	166
Conclusion	168
References	169
الملخص العربي	

LIST OF TABLES

Table No.:	Description	Page
Table (1.1)	A list of some reported laminated composites and their magnetoelectric response	7
Table (1.2)	List of some reported ME coefficients in magnetoelectric thin film and nanostructures	9
Table (1.3)	A list of some reported sintered particulate composite	11
Table (4.1)	The reliable parameters monitoring the goodness of fit for simulated XRD patterns for pure $BaTiO_3$, pure $CoFe_2O_4$, and ME composite samples $CzB(10-z)$, $z=1,,9$	66
Table (4.2)	Composition ratio, and structure information of CoFe_2O_4 phase forming the ME composite	73
Table (4.3)	Composition ratio, and structure information of BaTiO ₃ phase in the ME composite	74
Table (4.4.a)	Saturation magnetization (Ms) of pure $CoFe_2O_4$ and Magnetoelectric composite samples at temperature from 10 to 200 $^{\rm o}K$	85
Table (4.4.b)	Saturation magnetization (Ms) of pure $CoFe_2O_4$ and Magnetoelectric composite samples at temperature from 250 to 500 $^{\rm o}K$	85
Table (4.5.a)	Residual magnetization (Mr) of pure $CoFe_2O_4$ and Magnetoelectric composite samples at temperature from 10 to 200 oK	88
Table (4.5.b)	Residual magnetization (Mr) of pure $CoFe_2O_4$ and Magnetoelectric composite samples at temperature from 250 to 500 $^{\rm o}K$	89
Table (4.6.a)	Coercivity Hc of pure $CoFe_2O_4$ and Magnetoelectric composite samples at temperature from 10 to 200 $^{\rm o}K$.	91
Table (4.6.b)	Coercivity Hc of pure CoFe $_2$ O $_4$ and Magnetoelectric composite samples at temperature from 250 to 500 $^{\rm o}$ K	91
Table (4.7)	The relaxation frequency f_{max} and relaxation time τ for ME composite as function of ferrite content.	100

Table No.:	Description	Page
Table (5.1)	The reliable parameters monitoring the goodness of fit for simulated XRD patterns for pure $BaTiO_3$, pure $CoFe_2O_4$, and ME composite samples $BzC(10-z)$, $z=1,,9$	119
Table (5.2)	Composition ratio, and structure information of $CoFe_2O_4$ phase component in ME composites samples $BzC(10-z)$	124
Table (5.3)	Composition ratio, and structure information of $BaTiO_3$ phase in ME composite samples $BzC(10-z)$	124
Table (5.4.a)	Saturation magnetization (Ms) of pure $CoFe_2O_4$ and ME composite samples $BzC(10-z)$ at temperature from 10 to 200 $^{\rm o}K$	136
Table (5.4.b)	Saturation magnetization (Ms) of pure $CoFe_2O_4$ and ME composite samples $BzC(10\text{-}z)$ at temperature from 250 to 500 $^{\rm o}K$	136
Table (5.5.a)	Residual magnetization (Mr) of pure CoFe $_2$ O $_4$ and ME composite samples BzC(10-z) at temperature from 10 to 200 $^{\rm o}$ K	139
Table (5.5.b)	Residual magnetization (Mr) of pure CoFe $_2$ O $_4$ and ME composite samples BzC(10-z) at temperature from 250 to 500 $^{\rm o}$ K	139
Table (5.6.a)	Coercivity Hc of pure $CoFe_2O_4$ and ME composite samples BzC(10-z) at temperature from 10 to 200 $^{\rm o}K$	141
Table (5.6.b)	Coercivity Hc of pure $CoFe_2O_4$ and ME composite samples BzC(10-z) at temperature from 250 to 500 $^{\circ}K$	141
Table (5.7)	The relaxation frequency f_{max} and relaxation time τ for pure BaTiO ₃ , pure CoFe ₂ O ₄ phases and ME composite BzC(10-z)as function of ferrite content.	149

LIST OF FFIGURES

Figure No.:	Description	Page
Fig.(1.1)	Schematic illustration for different types of coupling present in materials.	2
Fig.(1.2)	Different modes of laminated composite	6
Fig.(1.3)	Nanostructured thin film magnetoelectric composites	8
Fig.(2.1)	The Perovskite structure of BaTiO3	24
Fig.(2.2)	The ion displacement due to the cubic tetragonal distortion in Barium titanate crystal	25
Fig.(2.3)	Parallel plate capacitor (a) without any dielectric, (b) filled with dielectric under short circuit condition ($E = constant$)	26
Fig.(2.4)	Frequency dependence of real part of the dielectric constant	29
Fig.(2.5)	Simplified phasor diagram of current and voltage for a capacitor filled with lossy dielectric material	30
Fig.(2.6)	Crystal structure of cubic spinel ferrite	32
Fig.(2.7)	Different types of magnetic moment ordering (a) Paramagnetic (b)Ferromagnetic (c) Antiferromagnetic (d) Ferrimagnetic	36
Fig.(2.8)	Super-exchange Interactions	39
Fig.(2.9)	Double exchange interactions	40
Fig.(2.10)	Magnetic Hysteresis loop	41
Fig.(2.11)	Magnetic moment alignment of multidomain material in absence of magnetic field and in presence of magnetic field.	44
Fig.(2.12)	Variation of intrinsic coercivity Hc with particle diameter D, Multidomain (MD) region curve (a), single domain (SD) region curve (b), superparamagnetism (SP) region curve (c)	45
Fig.(2.13)	Schematic picture of the energy of a single-domain particle with uniaxial anisotropy as a function of magnetization direction	50
Fig.(2.14)	Different type of connectivity of two phase composite system	53
Fig.(3.1)	Philips X'pert diffractometer	57
Fig.(3.2)	High resolution transmission electron microscope (HRTEM) Tecnai G20	59
Fig.(3.3)	The quantum design physical properties measurements system (PPMS) with vibrating sample magnetometer (VSM) unit	60