

ROLE OF CARDIAC MRI (1.5T) IN THALASSAEMIA

Essay

Submitted for fulfillment of Master degree in Radiodiagnosis

By

Noha Ali Gad Hassan

M.B.B, Ch.2007 Ain Shams University

Supervised By

Dr. Ahmed Samir Ibrahim

Professor of Radiodiagnosis Faculty of Medicine – Ain Shams University

Dr. Mary Yaftah Tadros

Lecturer of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2015-2016

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful.

I wish to express my deepest gratitude and thanks to **Dr. Ahmed Samir Ibrahim,** Professor of Radiodiagnosis, Faculty of Medicine – Ain Shams University, for his constructive criticism, unlimited help and giving me the privilege to work under his supervision.

My most sincere gratitude is also extended to **Dr. Mary Yaftah Tadros**, Lecturer of Radiodiagnosis, Faculty of
Medicine – Ain Shams University, for her enthusiastic
help, continuous supervision, guidance and support
throughout this work.

Last but not least, I can't forget to thank all members of my **Family**, for pushing me forward in every step in the journey of my life.

Candidate

Noha Ali Gad

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the Work	4
Chapter (1): Anatomy of the Heart	5
Chapter (2): Thalassemia	21
Chapter (3): Techniques of Cardiac MRI	34
Chapter (4): Thalassemic Manifestations in C MRI and Illustrative Cases	
Summary	98
References	102
Arabic Summary	

List of Abbreviations

Abbr.	Full-term
AIVG	: Anterior interventricular groove
Ao	: Aorta
APM	: Anterior papillary muscle
\mathbf{AV}	: Aortic valve
\mathbf{AV}	: Atrioventricular
BB	: Black blood
BH	: Breath-hold scan
CHF	: Congestive heart failure
CMR	: Cardiac Magnetic resonance
CS	: Coronary sinus
CT	: Crista terminalis
D	: Diaphragm,
EPI	: Echo-planar imaging
EV	: Eustachian valve
FO	: Fossa ovalis
FSE	: Fast spin-echo
Gad	: Gadolinium
GRE	: Gradient-echo
IAS	: Interatrial septum,
IOC	: Iron overload cardiomyopathy
IVC	: Inferior vena cava
IVS	: Interventricular septum
LA	: Left atrium
LAAP	: Left atrial appendage
LAD	: Left anterior descending artery
LAO	: Left Anterior oblique
LCA	: Left coronary artery
LCCA	: Left Common carotid artery

LCX : Left circumflex artery LIC : Liver iron content LIV : Left innominate vein,

LL : Left lung

LMB : Left mainstem bronchus, LPA : Left pulmonary artery

LV : Left ventricle

LVOT : Left ventricular outflow tract

MB : Moderator band

MIC : Myocardial iron concentration : Maximum intensity projection **MIP**

: Magnetic resonance MR

mTFE : Multiecho turbo field echo

: Mitral valve MVP4CH : 4 chamber view PA : Pulmonary artery

PHT : Pulmonary hypertension **PMVL** : Posterior mitral valve leaflet

PPM : Posterior papillary muscle

PUV : Pulmonary valve \mathbf{PV} : Pulmonary vein RA : Right atrium,

RAAP : Right atrial appendage **RCA** : Right coronary artery

RL : Right lung

RMB : Right mainstem bronchus

: Regions of interest ROI

: Right pulmonary artery **RPA**

 \mathbf{RV} : Right ventricle,

RVOT : Right ventricular outflow tract

SA : Short-axis

: Spatial modulation of magnetization **SPAMM**

SSFP : Steady state free precessionSSh : Single shot dual inversion

SVC : Superior vena cava,SVC : Superior vena cava

T : Trachea

TDT : Thalassaemia dependent transfusion

TEs : Echo times

TFE : Turbo field echoTSE-MRI : Turbospin echo MRITV : Tricuspid valveWB : White blood

β-TM : β -thalassemia major

List of Tables

Eable N	o. Eitle	Page V	lo.
Table (1):	Causes of death in patients with Thalassemia	•	. 33
Table (2):	Optimal Planes for Imaging Ca Structures and Chambers		. 49
Table (3):	Parameters for CMR T2* imaging	•••••	. 67
Table (4):	Correlation between iron ove detected by magnetic resonance ima (ms) and tissue (mg Fe/g dry weight	aging	. 92

List of Figures

Figure No.	Eitle	Page No.
Figure (1):	Position of the heart in the thoral left to right, transverse, coron sagittal images using turbospin ec (TSE-MRI) technique	al, and ho MRI
Figure (2):	External morphology of the heart	6
Figure (3):	Morphological right atrium	7
Figure (4):	Axial and sagittal TSE images	8
Figure (5):	Right axial GRE, left coronal TSE raap (right atrial appendage)	
Figure (6):	Axial TSE image shows left appendage (<i>laap</i>) and pulmona (<i>pv</i>)	ry vein
Figure (7) :	GRE horizontal long axis ima fossaovalis	
Figure (8):	The morphologic right ventricle	11
Figure (9):	Horizontal long axis GRE image.	12
Figure (10):	Short axis GRE view shows the t valve leaflets	_
Figure (11):	AxialGRE image shows the moband	
Figure (12):	Right ventricle inflow and outflo	
Figure (13):	The morphological left ventricle.	15

Figure (14):	GRE left ventricular outflow tract view shows the components of the left ventricle
Figure (15):	Short axis GRE image shows the mitral valve leaflets and commissures
Figure (16):	GRE short axis view shows the papillary muscles
Figure (17):	Essential characteristics of the morphological right and left ventricles 19
Figure (18):	GRE images
Figure (19):	Effect of excess production of free α globin chains
Figure (20):	Pathophysiology of pulmonary hypertension in hemoglobinopathies
Figure (21):	Representative black blood images of the heart in the short-axis
Figure (22):	Axial (A) and sagittal (B) half-Fourier acquisition single-shot turbo spin-echo images
Figure (23):	Creation of tag lines of the myocardium, using radial tagging technique40
Figure (24): I	Example of short-axis Spatial modulation of magnetization (SPAMM) tagging 40
Figure (25):	Example of Cardiac Magnetic Resonance Tagging. 41
Figure (26):	Phase-contrast images of a normal subject. A and B, Transverse aortic (A) and pulmonary artery (B) phase-contrast images

Figure (27):	Four-chamber (A) and short-axis (B) cine images using SSFP
Figure (28):	a–c. Axial, Sagittal and coronal images for the heart
Figure (29):	Schematic shows orientation of major body planes with respect to patient and their corresponding appearance on bright blood imaging sequences
Figure (30):	Schematic shows orientation of major cardiac planes with respect to heart and their corresponding appearance on bright blood sequences
Figure (31):	Normal cardiac MRI anatomy shown in healthy subject
Figure (32):	The 2-chamber scout is planned from the axial scout (<i>Left</i>) planning image; (<i>right</i>) resulting image
Figure (33):	The 4-chamber scout is planned from the 2-chamber scout (<i>Left</i>) planning image; (<i>right</i>) resulting image
Figure (34):	The short-axis scout is planned from the 4-chamber scout (<i>Left</i>) planning image; (<i>right</i>) resulting Image
Figure (35):	Alignment of SA stacks for analysis of ventricular volumes on the horizontal long-axis
Figure (36):	The short-axis (SA) cine stack is acquired from the base to the apex (not all views are shown)

Figure (37):	The 4-chamber cine is planned from the short-axis cine (<i>Left</i>) planning image; (<i>right</i>) resulting image
Figure (38):	The 3-chamber cine is planned from the short-axis cine (<i>Left</i>) planning image; (<i>right</i>) resulting image
Figure (39):	The 2-chamber cine is planned from the short-axis and 4-chamber cines (<i>Left</i>) planning image; (<i>middle</i>) planning image; (<i>right</i>) resulting image 57
Figure (40):	Myocardial biopsy showing individual myocyte hypertrophy with multiple deposits of brown granular material within the cytoplasm of the myocyte confirming heavy myocardial iron deposition (left image)
Figure (41):	T2 images of the heart and liver in a normal volunteer and in a patient with thalassemia
Figure (42):	Short axis T2 image of the heart showing one large region of interest placed in the left ventricular septum for T2 evaluation 62
Figure (43):	A typical image shows the full-thickness ROI in the interventricular septum for T2* measurement. ROI, region of interest
Figure (44):	Decay curves from the liver in two patients with `thalassemia, one patient with high liver iron content (red decay curve) and one with lesser liver iron content (green decay curve)

Figure (45):	A typical case showing T2* measurement from the bright-blood and black-blood techniques	5
Figure (46):	Myocardial iron overload 6	
Figure (47):	T2 iron content color maps of the liver and heart in a normal volunteer and in a patient with `thalassemia	
Figure (48):	Heart plot chart7	0
Figure (49):	Liver plot chart7	1
Figure (50):	Example of ex vivo cardiac T2* scans7	5
Figure (51):	MRI of myocardium and liver of a thalassemic patient with high (top) and low (bottom) iron deposition	7
Figure (52):	Cardiac MRI in patients with thalassemia major. A. Severe liver and heart iron. B. Severe liver iron and normal heart iron 7	8
Figure (53):	A 16-year-old male with β-thalassaemia major. a T2 map of the short axis of the heart shows low values of the left ventricle and the septum	9
Figure (54): C	ardiomyopathy in β-thalassemia8	0
Figure (55):	A: short-axis, gradient-echo imaging sequence shows myocardial signal before and after treatment	1
Figure (56):	A (diastole) and B (systole): cine magnetic resonance sequence in four-chamberview.	2
Figure (57):	A TM patient of 5.5 years old with detectable cardiac iron overload	3

Figure (58):	Patient referred for cardiac MRI to investigate suspected pericarditis 84
Figure (59):	Pericardial thickening in constrictive pericarditis (arrows)
Figure (60):	Loculated pericardial effusion (arrows) demonstrated with cine CMR images in orthogonal planes
Figure (61):	Coronal single-slice (MR) gradient echo images of heart with (ROI) in the anterior (A), apical (B), and inferior (C) segments of left ventricle (LV)
Figure (62):	Cardiac magnetic resonance imaging of a patient with pulmonary hypertension. 88
Figure (63):	Pulmonary hypertension (PHT): (SSFP) cine MRI in the chamber view in diastole and systole, axial (MIP) pulmonary of MR-angiography, and delayed myocardial enhancement (inversion recovery sequence after contrast agent administration). Short axis view
Figure (64):	Left ventricular (LV) short axis using gradient-echo sequence with multiple echo times (TEs) for evaluation of T2* 89
Figure (65):	Comparison of two patients with different iron loading profiles and ventricular function
Figure (66):	Iron chelation therapy for patients with thalassemia with cardiac iron overload 94

Figure (67):	A 35 year old male with beta-thalassemia major, regularly transfused since the age of 30 months, started chelation treatment with subcutaneous desferrioxamine at the age of 4 years	05
	the age of 4 years	.)
Figure (68):	Cardiac and liver T2* iron load measurements.	. 96
Figure (69):	MR gradient echo images of differential tissue iron clearance before and during intravenous chelation therapy	. 97

Introduction

Thalassemia is the commonest single gene disorder worldwide, with approximately 94 million heterozygotes for beta thalassemia and 60,000 homozygotes born each year (Weatherall et al., 1996).

Although survival is improving in cohorts of patients in whom deferoxamine was introduced at a younger age, myocardial siderosis resulting in heart failure remains the major cause of death (50–70%) in thalassaemia major patients. This occurs at a strikingly young age with between 15–50% dying by the age of 35 years (*Modell et al.*, 2000).

Some thalassemia centers have used liver iron concentration by biopsy as their gold standard for chelation titration (*Olivieri*, 2001). The liver is the dominant iron storage organ and liver iron concentration correlates closely with the total iron balance (*Angelucci et al.*, 2000). Elevated liver iron also prospectively predicts poor endocrine and cardiovascular outcomes in patients with thalassemia major (*Telfer et al.*, 2000).

Unfortunately, liver biopsy is invasive, expensive and subject to sampling error (*Butensky et al.*, 2005). Although the risk of ultrasound-guided liver biopsy is relatively low, hemorrhage requiring prolonged hospitalization occurs in