Recent Modalities in Management of Gastrointestinal Stromal Tumors

Essay

Submitted in partial fulfillment for the Master Degreein General Surgery

By

Omar Ahmed Mahmoud Mohamed

M. B. B.Ch.
Faculty of Medicine, Assuit University

Supervised by

Prof. Dr. Mohamed Ahmed Mohamed Khalaf

Professor of General surgery Faculty of Medicine, Ain Shams University

Dr. Walid Ibrahim AbdRabuh

Assistant professor of General surgery Faculty of Medicine, Ain Shams University

Dr. Mostafa Abdoh Mohamed

Assistant professor of General Surgery Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain-Shams University 2016

First thanks to Allah to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr Mohamed Ahmed Mohamed Khalaf** professor of General Surgery, Faculty of Medicine, Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

I would like to express my sincere appreciation and deepest gratitude to **Dr. Walid Ibrahim Abd Rabuh**Assistant professor of General surgery Faculty of Medicine, Ain Shams University

I am deeply thankful to **Dr.** Mostafa Abdo, Assistant professor of General surgery Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

Mahmoud Mohamed

List of Contents

Title Page No.
List of Tablesii
List of Figuresiii
List of Abbreviationsvi
Introduction 1 -
Aim Of The Work8 -
Review of literature
(Chapter 1): Histopathology Of Gist 9 -
(Chapter 2):Diagnosis Of Gastrointestinal Stromal
Tumors 17 -
Clinical presentations17-
Rare Presentations19-
Investigations23-
(Chapter 3): Treatment Of Gastrointestinal Stromal
Tumors 41 -
Surgical Treatment41 -
Targeted Medical Therapy In Gist 62 -
Surveillance And Prognostic Fueture 69 -
Summary 79 -
References 85 -
Arabic summary

Tist of Tables

Table No.	Title	Page No.
gastro-i	ntestinal stromal tumo	tochemical markers for ors (GISTs) and other
Index, S follow- duodens GIST,	Size, and Site. Data a up of 1055 gastric, 62 al, and 111 rectal (gastrointestinal strom	mary GIST by Mitotic are based on long-term 29 small intestinal, 144 GISTs. Abbreviations: hal tumor; HPF, high- lumbers of cases 23 -
according consens	ng to tumour size a sus approach 2002 (H	on of primary GIST and mitotic activity, a PF corresponding to 5

List of Figures

Fig. No.	Title	Page No.
Figure (1): Gro	oss appearances of gastric GIS	Γs 11 -
_	large exophytic gastric GIST	
gre	ater curve	25 -
Figure (3): H	Endoscopic image of GIST	in fundus of
stor	mach, seen on retroflexion	26 -
Figure (4): S	Same GIST seen on forward	d view of the
end	loscope showing overlying clot	t&ulceration 26 -
_	rge exophytic gastric GIST arises	<u> </u>
	ve	
•	ft parasagittal view of Trans red	U 1 •
	ows an exophytic hypoechoic	•
	m the anterolateral wall of rect	
•	stric GIST over the lesser curv	
	ows a typical submucosal	
	erlying mucosal ulceration	
	strointestinal stromal tumor wi appearance	
	Representative morphological	
_	tric GIST. A: Preoperative C'	<u> </u>
_	ne tumor after partial gastric re	
	Gastric GIST arises from	
_	rresponding contrast-enhanced	_
	ejunal GIST. A moderately con	
_	t-tissue mass	<u>-</u>
Figure (12): G	astric GIST. A large exogastric	c heterogeneous
mas	ss sits in close proximity to	the posterior
gas	tric wall	34 -
Figure (13):	Ileal GIST presented with	th intermittent
gas	trointestinal bleeding. Super	rior mesenteric
ang	giography shows a hypervascul	ar mass 38 -

Tist of Figures (Con)

Fig. No.	Title	Page No.
y ug. vw.	Oute	puye vu

Figure (14): outlines a proposed treatment algorithm for	
patients who are diagnosed with GIST in the	
Imatinib era	43 -
Figure (15): A gastric stromal tumor treated by endoscopic	
mucosal resection.	46 -
Figure (16):. GIST: (A)CECT scan of a large dimension	
GIST invading adjacent transverse colon (B).	
macroscopic aspect of the surgical specimen	
with R0 resection	50 -
Figure (17): A gastric stromal tumor treated by endoloopy	52 -
Figure (18): A mass in rectum was GIST	
Figure (19) : Midline incision for trans-sacral local resection.	
Skin over sacrum was incised and extended to	
the point between coccyx and anus	57
•	57 -
Figure (20): Procedure of gastroscopic resection of the	
lesion	59 -

Ist of Abbreviations

AFIP : Armed forces institute of pathology

ATP :adenosine triphosphate CD :Cluster of differentiation

CECT :contrast enhanced computed tomography

CR : Complete response
DFS : Disease free survival
DSS : disease-specific survival

EGISTs :Extra gastrointestinal stromal tumors

EUS :Endoscopic ultrasonography

ESMO :European society of medical oncology

FDG :fluoro-2-deoxy-D-glucose FNA :fine needle aspiration

GI :Gastrointestinal

GISTS :Gastrointestinal stromal tumors

GIST/Ls :Gastrointestinal stromal tumors and leiomyoma's

GIT :Gastrointestinal tract

HAE :Hepatic arterial embolization

HPF :High power field

ICCs :Interstitial cells of CajalIHC :ImmunohistochemistryIM :Imatinib Mesylate

LMP :Low malignant potential MRI :Magnetic resonanc image

NCCN :National Comprehensive Cancer Network

NF1 :Neurofibromatosis type one

OS :Overall survival

PDGFRα :Platelet-derived growth factor receptor alpha

PET :Positron Emission Tomography

PFS :Progression-free survival RFS :recurrence-free survival

RR :Response rate

SDH :succinate dehydrogenase SMA :Smooth muscle actin VCE :Video capsule endoscope

INTRODUCTION

Gastrointestinal stromal tumors (GISTs) are the most frequent mesenchymal tumors of the gastrointestinal tract (*Demetri et al.*, 2007).

GISTs are rare, accounting for only 1% to 3% of all malignant gastrointestinal tumors and only (*Lamba et al.*,2012). The annual incidence of GIST is 11 - 14/million annually and the median age of diagnosis is 60 years (range 51 - 60)(*Rammohan et al.*, 2013).

These tumors are very rare in the pediatric population, with <1% occurring prior to age 21(*Miettinen and Lasota*, 2013).

Mesenchymal tumors are a family of related tumors including those named plexosarcomas, leiomyoblastomas, leiomyosarcomas, GISTs, gastrointestinal autonomic tumors (GANTs), and gastrointestinal pacemaker cell tumors (GIPACTs) (*Megan et al.*, 2004).

The first accurate description of mesenchymal neoplasms of the gastrointestinal tract (GIT) was in 1941. Traditionally, these tumors were thought to be derived from smooth muscle cells, based on their resemblance to smooth muscle tumors and they were designated as leiomyomas, bizarre leiomyomas, cellular leiomyomas and leiomyosarcomas. However, with the advent of electron

microscopy, it has been shown that relatively few neoplasms showed convincing ultrastructural evidence of smooth differentiation. muscle The application of immunohistochemistry revealed that many of neoplasms lacked the immunophenotypical features of smooth muscle differentiation (Muna et al., 2005).

The term Gastrointestinal stromal tumors (GISTs) was first used, and includes a heterogeneous group of non epithelial neoplasms with spindle or epithelioid cells, which may display myogenic features (smooth muscle GISTs), neural attributes (gastrointestinal autonomic nerve tumor), or characteristics of both muscle and nerve (mixed GISTs), or may lack differentiation (GISTs not otherwise specified) (*Nikolaos et al.*, 2005).

Subsequently, the concept of 'plexosarcoma' with the existence of a small subset of stromal tumors with autonomic differentiation, became better neuronal known as gastrointestinal autonomic nerve tumors (GANTs) (Muna et al., 2005).

With the advent of immunohistochemical analysis a definition of a new entity among the gastrointestinal mesenchymal tumors called the gastrointestinal stromal tumors (GISTs) which particularly express the c-kit (CD117) protein a growth factor trans-membrane receptor with tyrosine kinase activity (Daniel et al., 2005).

They may occur anywhere along the length of the digestive tract from the esophagus to the anus. They account for approximately 1-3% of gastric neoplasms, 2% of small howel tumors and 0.2-1% of colorectal Approximately 60-70% of the GISTs arises in the stomach, 20-30% in the small intestine, 5% in the colon and rectum, less than 5% in the esophagus and sometimes develops outside the intestinal tract, in the abdominal cavity (Nikolaos et al., 2005).

There was considerable controversy as to the line of differentiation, since some tumors exhibited a myogenic phenotype, others showed neural differentiation, some revealed mixed differentiation and some cases did not show any specific line of differentiation, the 'null phenotype' (Muna et al., 2005).

GISTs were divided into four major types: smooth muscle; neural; combined smooth muscle-neural; uncommitted. Recent studies have reported GIST cells demonstrating characteristics similar to those of the interstitial cells of Cajal (ICC), or 'pacemaker cells', which play a neuromotor role in normal gut motility (Ken-ichi et al, 2006).

GISTs also vary greatly in size, morphology, and malignancy potential, creating a continuum of neoplasms with uncertain malignancy potential ranging from virtually

benign tumors to overtly malignant, aggressive cancers. The more indolent GISTs are typically small, whereas other GISTs may present with overt metastases already at the time of the diagnosis (Heikki, 2006).

GISTs typically arise in the bowel wall, usually from the muscularis propria, and may extend intraor extraluminally (Sullivan et al., 2006).

GISTs arise from activating mutations in KIT or platelet-derived growth factor receptors α (PDGFR α) (Michael, 2006). In the 1990s, investigators noted similarities between GIST cells and the interstitial cells of Cajal, a group of cells located in the muscularis propria and around the myenteric plexus throughout the GI tract, serving pacemakers for peristaltic contraction (Janeway et al., 2007).

Immunohistochemically, the tumor cells revealed a similar to Cajal cells, occasionally with differentiation to smooth muscle cells or neural cells. Nonepithelial tumors originating from the gallbladder are rare. rhabdomyosarcoma, Among these. malignant angiosarcoma reportedly represent histiocytoma, and malignant mesenchymal tumors (Makoto et al., 2005).

Risk factors and aetiology are unknown, but there is a rare association with neurofibromatosis type. Some studies show no significant sex difference, whilst others show a male predominance.. Sporadic instances are rare before the age of

forty. However, GISTs can be familial, thus can be present in younger patients (Sullivan et al., 2006).

Primary GISTs may occur in locations other than gastrointestinal tract for example the first case of a large Primary gastrointestinal stromal tumor presenting as a uterine mass in a 77-year-old female. It is extremely rare that these tumors occur in the bile tract (Makoto et al., 2005).

It is generally accepted that the criteria needed for predicting biological behavior may differ significantly with location. For example, in the colon, size smaller than 2 cm and mitotic rate less than 1 mitosis /50 High power field (HPF) are indicators of benignity, while size larger than 5 cm and mitotic rate greater than 5/10 are generally accepted as predictors of malignancy (Hillemanns et al., 2005).

This lack of clarity in distinguishing GISTs can potentially affect clinical decision-making, because non-GISTs included in the differential diagnosis are sensitive to systemic chemotherapeutic treatment, whereas GISTs are resistant. Surgical resection was historically the only therapy with efficacy in true GISTs. However, even complete surgical resection of primary GIST carried a substantial risk for recurrence (Charles, 2006).

clinical presentation of GIST is Furthermore, only 70% of the patients are symptomatic, while 20% are asymptomatic and 10% are detected at

autopsy.(Kim et al., 2005).

GISTs evaluation can be done with many imaging methods like: ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), positron emission transverse tomography (PETT). CT-scan can detect small intestinal tumors and guide the biopsy, it is an accessible and sensitive method especially in case of liver metastasis and also provides useful information about the response to the treatment and about the recurrence (Rosenbaum et al., 2006).

Surgery is the mainstay of therapy for non metastatic GISTs. Lymph node metastasis is rare and routine removal of lymph nodes is typically not necessary, also wide margins are not necessary. Laparoscopic surgery has been shown to be effective for removal of these tumors without the need of large incisions (Nguyen et al., 2006).

tyrosine kinase inhibitor Imatinib (Glivec/ Gleevec), a drug initially marked for chronic myelogenous leukemia, was found to be useful in treating GISTs, leading to a 40-70% response rate in metastatic or inoperable cases. Patients who become refractory on Imatinib may respond to the multiple tyrosin kinase inhibitor sunitinib (Sutent) (Eisenberg et al., 2009).

Overall survival (OS) at 5 years for patients with GISTs has been reported to be 19% to 56% from various series. Complete resection has a major effect on survival. This was true even when achieving a complete resection involving the resection of multiple adjacent organs. Tumor grade was the second major factor that had an effect on survival and recurrence. (Nguyen et al., 2006).

Close follow-up with abdominal and pelvic computed tomography scanning beyond the usual 5- year is essential (Dematteo et al., 2000).