

faculty of Science Zoology Department

Physiological and Molecular Studies on the Protective Effect of Vitamin (E) and Selenium against the Toxicity of Certain Heavy Metals in Male Rabbits

A Thesis Submitted for the Award of the Ph.D. Degree of Science in Zoology (Physiology)

By Mahenor Ezz El-Din Abdel-Salam Mohamed M.Sc. 2003

Supervisors

Prof. Dr. Nadia Mohamed Abdel-Aziz El-Beih Professor of Physiology, Zoology Department,

Faculty of Science, Ain Shams University.

Prof. Dr. Karima Fathy Mahrous

Professor of Genetics Department of Cell Biology National Research Centre.

Prof. Dr. Omaima Hamed Mahmoud Ezzo

Professor of Reproductive Physiology Department of Animal Reproduction National Research Centre.

Dr. Mona Ahmed Mohamed Abdel-Majeed

Lecture of Physiology, Zoology Department, Faculty of Science, Ain Shams University.

﴿ قَالُواْ سُبُحَانَكُ لَا عِلْمِ لَنَا إِلَّا مَا عَلَّمُتَنَا

إِنَّكُ أَنتَ الْعَلِيمُ الْحَكِيمُ ﴾

صدق الله العظيم

سورة البقرة , الآية (٣٢)

Acknowledgment

I would like to express my cordial gratitude, indebtedness, and sincere thanks to **Prof. Dr. Nadia Mohamed El-Beih**, Professor of Physiology, Department of Zoology, Faculty of Science, Ain Shams University, for suggesting the point of research and planning of the study. I appreciate her direct supervision, motherly guidance and useful criticism. She gave me a lot of time for discussion and reviewing all the work line by line. Moreover, her instructions for writing the thesis were very important. What I have learned from her not only in the scientific field but also in many issues concerning my personal life.

Great thanks are due to **Prof. Dr. Karima Fathy Mahrous**, Professor of Genetics, Department of Cell Biology, National Research Centre, for kind supervision, wise cooperation and fruitful directions that had rendered many difficulties easily surmountable; I would gratefully acknowledge her.

My thanks would be given to **Prof. Dr. Omaima Hamed Ezzo**, Professor of Reproductive Physiology, Department of Animal Reproduction, National Research Centre, for kind supervision and valuable assistance.

I also owe my thanks to **Dr. Mona Ahmed Mohamed**, Lecturer of physiology, Department of Zoology, Faculty of Science, Ain Shams University, for kind supervision and ideal guidance.

My deep thanks and gratitude are expressed to **Prof. Dr. Mohamed Abdel-Mordy Arafat**, Professor of Cell Biology and Genetics, Department of Zoology, Faculty of Science, Ain Shams University, he is my idol in life, and I appreciate his kind support, continuous encouragement and useful advice during my work.

Many thanks are due to head and all staff members of zoology department, faculty of science, Ain Shams University. I would like to afford my gratitude to my colleagues in National Research Centre and Misr University for Science and Technology for their kind cooperation and giving me the friendly atmosphere that pushed me toward progress.

Finally my deep thanks are expressed to my mother and father for their patience and moral support. Special thanks to my sister **Mhrban** for her continuous help and encouragement.

List of Abbreviations

4-AP
 AOS
 ASA
 4-aminophenazone
 Antioxidant defense system
 American standard association

AsampleAbsorbance of sampleAstandardAbsorbance of standardATPAdinosine triphosphateATPaseAdinosine triphosphatase

b.m.body massbody weightbpbase pairCaCalcium

cAMP cyclic adenosine monophosphate

CAT Catalase Cadmium

CdMT Cadmium-metallothionein

Cd-Se Cadmium-selenium

conc concentration

Cu⁺² Copper

DAD Diode array detector

DDW Deionized distilled water

DHBS 3,5-Dichloro-2-hydroxybenzene

sulfonic acid

dist. H₂O distilled water

dl decilitre

DNA Deoxyribonucleic acid
DSB Double strand breaks

DTNB 5,5'-dithiobis (2-nitrobenzoic acid) **EDTA** Ethylenediaminetetraacetic acid

$ ight] m Fe^{+2}$	Iron
GI	Gastrointestinal
GPx	Glutathione peroxidase
GR	Glutathione reductase
GSH	Reduced glutathione
GSSG	Oxidized glutathione
GST	Glutathione S-transferase
G6PD	Glucose-6-phosphate dehydrogenase
HCL	Hydrochloric acid
HD	High dose
HDL-chol.	High-density lipoprotein cholesterol
HMG-CoA	3-hydroxy-3-methylglutaryl-coenzyme
НР	A Hewlett Packard
HPLC-DAD	High-Performance Liquid Chromatography with Diode-Array
HRP hr	Detection Horseradish peroxidase hour
ID	Internal diameter
IDD	Iodothyronine deiodinases
IL-1β	Interleukin-1 beta
inj vol	injection volume
i.m.	intramuscular
i.p.	intraperitoneal
i.v.	intravenous
IU	International unit
K	Potassium
LA	Lead acetate
LDL-chol.	Low-density lipoprotein cholesterol
LH	Lutenizing hormone

LP Lipid peroxidation

LPL Lipoprotein lipase
LPO Lipid peroxidation

LPP Lipid peroxidation potential

M Molar

MW Molecular weight
MDA Malondialdehyde

minminutemMmillimolarmmolmillimole

mRNA messanger ribonucleic acid

MT Metallothionein

Na Sodium

NADP Nicotinamide adenine dinucleotide

phosphate

NADPH Nicotinamide adenine dinucleotide

phosphate hydrogen

Na₂EDTA Disodium ethylenediaminetetraacetate

NDI Nuclear division index

ngnanogramnmnanometernmolnanomoleNONitric oxide

ODS Official document system

OH Hydroxyl anion radicals

O₂ Oxygen

O₂ Superoxide anion radicals

Pb Lead

PbB Blood lead levels

PBS Phosphate buffer saline

PCR Polymerase chain reaction

per os By mouth

pH Potential of Hydrogen

PKC Protein Kinase C

pmol picomole

ppm part per million

P-value The probability of obtaining

P450scc Cholesterol side-chain cleavage enzyme

RAPD random amplified polymorphic DNA

RAPD-PCR Random amplified polymorphic DNA-

polymerase chain reaction

ROIs Reactive oxygen intermediates
ROMs Reactive oxygen metabolites

ROS Reactive oxygen species

rpm round per minute

s.c. subcutaneous

SDH Synchronous Digital Hierarchy

SDS Sodium dodecyl sulfate

Se Selenium

Se-Cys Selenocysteine

Se-GPx Selenium-dependent glutathione

peroxidise

SEM Standard error of mean

SH Sulfhydryl

SOD Superoxide dismutase

SPSS Statistical Package for Social Science

SSB Single strand breaks

StAR Steroidogenic acute regulatory protein

T Testosterone

TBA Thiobarbituric acid

TBARS Thiobarbituric acid reactive substances

TBE buffer Tris-borate EDTAT.chol. Total cholesterol

TE buffer Tris-EDTA

TFA Trifluoro acetic acid

TG Triglycerides

TNF-α Tumor necrosis factor-alpha

TP Total protein

TR Thioredoxin reductase

TUNEL terminal dUTP nick-end labeling

U Unit

UPGMA Uvisoft program for gel documentation

and analysis

UV Ultraviolet
Vit. E Vitamin E

VLDL Very low-density lipoprotein

v/vvolume/volumew/vweight/volume

XDB Extra dense bonding

Zn²⁺ Zinc

α-globulinAlpha-globulinα-tocopherolAlpha-tocopherolβ-globulinBeta-globulin

3β-HSD
 17β-HSD
 5'D-I
 3 Beta-hydroxysteroid dehydrogenase
 type-I iodothyronine 5'-monodeiodinase

δ-ALA Delta-amino levulinic acid

δ-ALAD Delta-amino levulinic acid dehydratse

γ**-globulin** Gamma-globulin

List of Tables

Table's Number & Title	Page	
Materials and Methods		
I. Pellet constituents	47	
II. Sequence of primers used to amplify DNA.	70	
Results		
1. Effect of vitamin E or sodium selenite on the change in body weight (kg) in lead acetate-intoxicated adult male rabbits (<i>Oryctolagus cuniculus</i>).	73	
2. Effect of vitamin E or sodium selenite on the change in body weight (kg) in cadmium chloride-intoxicated adult male rabbits (<i>Oryctolagus cuniculus</i>).	76	
3. Effect of vitamin E or sodium selenite on liver, left kidney and left testis weights (gram) in lead acetate-intoxicated adult male rabbits (Oryctolagus cuniculus).	79	
4. Effect of vitamin E or sodium selenite on liver, left kidney and left testis weights (gram) in cadmium chloride-intoxicated adult male rabbits (Oryctolagus cuniculus).	83	
5. Effect of vitamin E or sodium selenite on liver weight/bw, left kidney weight/bw and left testis weight/bw ratios in lead acetate-intoxicated adult male rabbits (<i>Oryctolagus cuniculus</i>).	86	

90 6. Effect of vitamin E or sodium selenite on liver wight/bw, left kidney weight/bw and left testis weight/bw ratios in cadmium chloride-intoxicated adult male rabbits (Oryctolagus cuniculus). 7. Effect of vitamin E or sodium selenite on serum 93 malondialdehyde (MDA) level (nmol/ml) in lead acetate-intoxicated adult male rabbits (Oryctolagus cuniculus). 8. Effect of vitamin E or sodium selenite on serum 96 malondialdehyde (MDA) level (nmol/ml) cadmium chloride-intoxicated adult male rabbits (Oryctolagus cuniculus). 99 9. Effect of vitamin E or sodium selenite on hepatic malondialdehyde (MDA) level (nmol/g tissue) in acetate-intoxicated adult male (Oryctolagus cuniculus). 102 10. Effect of vitamin E or sodium selenite on hepatic malondialdehyde (MDA) level (nmol/g tissue) in cadmium chloride-intoxicated adult male rabbits (Oryctolagus cuniculus). 11. Effect of vitamin E or sodium selenite on renal 105 malondialdehyde (MDA) level (nmol/g tissue) in lead acetate-intoxicated adult male rabbits (Oryctolagus cuniculus). 12. Effect of vitamin E or sodium selenite on renal 108 malondialdehyde (MDA) level (nmol/g tissue) in adult chloride-intoxicated cadmium male rabbits (Oryctolagus cuniculus).

13. Effect of vitamin E or sodium selenite on 111 testicular malondialdehyde (MDA) level (nmol/g tissue) in lead acetate-intoxicated adult male rabbits (Oryctolagus cuniculus). 14. Effect of vitamin E or sodium selenite on 114 testicular malondialdehyde (MDA) level (nmol/g tissue) in cadmium chloride-intoxicated adult male rabbits (Oryctolagus cuniculus). 15. Effect of vitamin E or sodium selenite on serum 117 catalase activity (U/L) in lead acetate-intoxicated adult male rabbits (Oryctolagus cuniculus). 16. Effect of vitamin E or sodium selenite on serum 120 catalase (CAT) activity (U/L) in cadmium chloride-intoxicated adult male rabbits (Oryctolagus cuniculus). 17. Effect of vitamin E or sodium selenite on hepatic 123 catalase (CAT) activity (U/g tissue) in lead acetate-intoxicated adult rabbits male (Oryctolagus cuniculus). 18. Effect of vitamin E or sodium selenite on hepatic 126 catalase (CAT) activity (U/g tissue) in cadmium chloride-intoxicated rabbits adult male (Oryctolagus cuniculus). 19. Effect of vitamin E or sodium selenite on renal 129 catalase (CAT) activity (U/g tissue) in lead acetate-intoxicated adult male rabbits (Oryctolagus cuniculus).

20. Effect of vitamin E or sodium selenite on renal 132 catalase (CAT) activity (U/g tissue) in cadmium chloride-intoxicated adult male rabbits (Oryctolagus cuniculus). 21. Effect of vitamin E or sodium selenite on 135 testicular catalase (CAT) activity (U/g tissue) in lead acetate-intoxicated adult male rabbits (Oryctolagus cuniculus). 22. Effect of Vitamin E or sodium selenite on 138 testicular catalase (CAT) activity (U/g tissue) in chloride-intoxicated cadmium adult rabbits (Oryctolagus cuniculus). 23. Effect of vitamin E or sodium selenite on serum 141 reduced glutathione (GSH) content (mmol/l) in lead acetate-intoxicated adult male rabbits (Oryctolagus cuniculus). 24. Effect of vitamin E or sodium selenite on serum 144 reduced glutathione (GSH) content (mmol/l) in cadmium chloride-intoxicated adult male rabbits (Oryctolagus cuniculus). 25. Effect of vitamin E or sodium selenite on hepatic 147 reduced glutathione (GSH) content (mmol/g tissue) in lead acetate-intoxicated adult male rabbits (Oryctolagus cuniculus). 26. Effect of vitamin E or sodium selenite on hepatic 150 reduced glutathione (GSH) content (mmol/g tissue) in cadmium chloride-intoxicated adult male rabbits (Oryctolagus cuniculus).

27. Effect of vitamin E or sodium selenite on renal reduced glutathione (GSH) content (mmol/g tissue) in lead acetate-intoxicated adult male rabbits (<i>Oryctolagus cuniculus</i>).	153
28. Effect of vitamin E or sodium selenite on renal reduced glutathione (GSH) content (mmol/g tissue) in cadmium chloride-intoxicated adult male rabbits (<i>Oryctolagus cuniculus</i>).	156
29. Effect of vitamin E or sodium selenite on testicular reduced glutathione (GSH) content (mmol/g tissue) in lead acetate-intoxicated adult male rabbits (<i>Oryctolagus cuniculus</i>).	159
30. Effect of vitamin E or sodium selenite on testicular reduced glutathione (GSH) content (mmol/g tissue) in cadmium chloride-intoxicated adult male rabbits (<i>Oryctolagus cuniculus</i>).	162
31. Effect of Vitamin E or sodium selenite on serum glutathione peroxidase (GPx) activity (mg/100 ml serum) in lead acetate-intoxicated adult male rabbits (<i>Oryctolagus cuniculus</i>).	166
32. Effect of vitamin E or sodium selenite on serum glutathione peroxidase (GPx) activity (mg/100 ml serum) in cadmium chloride-intoxicated adult male rabbits (<i>Oryctolagus cuniculus</i>).	169
33. Effect of vitamin E or sodium selenite on serum total cholesterol level (mg/dl) in lead acetate-intoxicated adult male rabbits (<i>Oryctolagus cuniculus</i>).	172