Study of Causes of Renal Allograft Dysfunction: A Clinico-Pathological Analysis

Thesis

Submitted for the partial fulfillment of master degree in Internal Medicine

By Bossy Abdullatief Hemaia

M.B.B.Ch. Cairo University

Supervised by Professor Dawlat Belal

Professor of Internal Medicine Faculty of Medicine, Cairo University

Professor Salwa Ibrahim

Professor of Internal Medicine Faculty of Medicine, Cairo University

Professor Sawsan Fadda

Professor of Pathology Faculty of Medicine, Cairo University

Faculty of Medicine
Cairo University
2012

<u>Abstract</u>

Background and Objectives:

Kidney transplantation is currently the treatment of choice for end-stage renal disease (ESRD). It should be strongly considered for all patients with ESRD with no contraindication to this operation.

Renal allograft dysfunction has many etiologies. The greatest considerations are rejection, nephrotoxicity of calcineurin inhibitors, and recurrence of native kidney disease. This retrospective study aimed to review the causes of renal allograft dysfunction histologically and the possible associated factors.

Methods:

It was carried out on renal transplant recipients in King Fahd unit from January 2003 to January 2010 (147). The mean age was 28.18±12.24 years. As regard gender: 110 male and 37 female patients. Nearly 27% experienced at least one episode of renal allograft dysfunction.

Results:

Results revealed that the most frequent pathology encountered was acute active rejection (46.7%) while interstitial fibrosis with borderline rejection was the least frequent (5%). The results showed that increased donor's age was proven to be an important factor. The type of pathology encountered was different according to the age of donors e.g chronic CsA effect and interstitial fibrosis occurred more in older donors (39±9.3, 45.3±6.3 respectively) than other types of pathological diagnosis. The time of allograft biopsy just after renal allograft dysfunction was significantly correlated with the type of pathology. As regard graft survival, 125 grafts (85%) survived for 48 months postoperatively and 22 grafts (15%) were lost.

The main causes of graft loss were death of recipients with a functioning graft (68.1%).

Conclusions:

<u>Keywords:</u> Renal transplantation, Causes of rejection, Kidney biopsy, Renal Allograft dysfunction .

<u>Acknowledgment</u>

First Of All Thank God

I thank God for all his blessings and giving, particularly the blessing of being supported by loving, supportive family and friends who helped me a lot during the preparation of this work.

I would like to express my deepest thanks to **Professor Dawlat Mohamed Abd-El Hamid Belal**, professor of Internal medicine and NephrologyCairo University, for her kind supervision and for her continuous encouragement and guidance. She offered me much of her kind advises and sacrified much of her valuable time to complete this work.

I would also to express my thanks and appreciation to **Professor Salwa Ibrahim Mohamed**, professor of Internal medicine and Nephrology-Cairo

University, for her support and guidance for me in every step of this work.

Neither did she save her effort nor her time for accomplishment of this work.

I would also like to express my sincere thanks to **Professor Sawsan Abd-El Monem Fadda**, Professor of Pathology-Cairo University, as she offered me much of her effort and time in providing data about biopsy-proven renal allograft dysfunction in the period from January 2003 till January 2010, which was submitted to pathology department-Cairo University and for her continuous support for me along this work and till now.

I would like to acknowledge the great help I received from Dr. Ihab Abdelrahman, lecture of Internal medicine and Nephrology, who spent much of his time in revision of this work.

Bossy Abdullatief Hemaia

i

Table of contents

	Page
• Introduction and aim of work	1
• Review of literature:	
Chapter 1: Introduction to transplantation	6
 Pre transplant recipient evaluation 	7
 Donor of kidney transplantation 	13
 Immunosuppressive drug therapy 	16
Chapter 2: Complication of renal transplantation	29
 Medical causes of renal allograft dysfunction 	30
 Types of renal allograft rejection 	31
 Surgical complication of renal transplantation 	39
Chapter 3: Pathology of renal allograft	42
• Subjects and methods	67
• Results	70
• Discussion	93
• Summary, conclusion	102
• recommendations	105
• References	106
الما خصر العرب	

List of Abbreviations

AV	Acute vascular rejection
ANCA	Anti neutrophilic cytoplasmic antibody
ATN	Acute tubular necrosis
ACR	Acute cellular rejection
AHR	Acute humoral rejection
ALG	Anti lymphocytic immunoglobulin
ATG	Anti thymocyte immunoglobulin
CIN	Calcinurine inhibitors
CMV	Cytomeglovirus
CDC	Complement-dependent lymphocytotoxicity
CV	Chronic vascular rejection
CAR	Chronic allograft rejection
CAN	Chronic allograft nephropathy
DDT	Dithiothreitol
DM	Diabetes Mellitus
EBV	Ebstein barr virus
EM	Electronmicroscope
ESRD	End stage renal disease
FKBP	Fujimycin binding protein
GN	Glomerulonephritis
GI	Gastro intestinal
GBM	Glomerular basement membrane
HLA	Humal leucocytic antigen
HUS	Heamolyic ureamic syndrome
HAR	Hyper acute rejection
HTN	Hypertension
ID	Identical
IL-2	Interleukin-2
IMPDH	Inosine monophosphate dehydrogenize enzyme
MMF	Mycophenolate mofetil
mTOR	Mammalian target of Rapamycin

NFAT	Nuclear factor of activated T-cells
PPD	Purified protein derivative
PTC	Peritubular capillaries
PVN	Polyoma virus nephropathy
PRA	Panel reactive antibody
PTLD	Post transplant lymphoproliferative disorder
RPR	Rapid plasma reagent
SCR	Subclinical rejection
TMA	Thrombotic microangiopathy
TA	Transplanted arteriopathy

List of Tables

Number of table	Title	Page
Table 1-1	Recurrence of original diseases in renal	37
	allograft	
Table 2-1	Demographic, clinical and laboratory data	70
	of the study population	
Table 3-1	Demographic and clinical data among the	74
	two study groups	
Table 4-1	Histopathological diagnosis of the study	79
	group B	
Table 5-1	Demographic and clinical data among the	81
	different histopatholgical subgroups of the	
	study group B	
Table 6-1	Renal allograft survival of the study	89
	population	
Table 7-1	Renal allograft survival of the study group	90
	A	
Table 8-1	Renal allograft survival of the study group	91
	В	

List of Figures

Figure	Title	Page
Figure 1 -1	Tubulitis by periodic acid–Schiff(PAS) stain	51
Figure 1 -2	Interstitial inflammation with tubulitis sufficient	51
	to diagnose acute cellular rejection	
Figure 1 -3	Scattered interstitial inflammation typical of	53
	borderline changes that are suspicious for acute	
	cellular rejection	
Figure 1 -4	Type II or vascular type of acute T-cell-mediated	53
	rejection (ACR)	
Figure 1 -5	Severe intimal arteritis diagnostic of type IIB	54
	acute cellular rejection	
Figure 1 -6	Transplant glomerulopathy	56
Figure 1 -7	Typical advanced transplant glomerulopathy	57
	with glomerulitis	
Figure 1 -8	Transplant arteriopathy	58
Figure 1 -9	Chronic calcinurin inhibitor toxicity. There is	60
	segmental glomerulitis, which in this case was	
	part of chronic humoral rejection	
Figure 1 -10	Advanced hyalinosis seen many years after	61
	transplant in a patient on cyclosporine	
Figure 1 -11	Typical polyomavirus nuclear inclusions	64
Figure 2-1	Gender distribution of the study population	72
Figure 2-2	Prevalence of DM and HTN among the study	72
	population	

Figure 2-3	Donor –recipient relationship (related, non	73
	related) among the study population	
Figure 2-4	Gender of donors among the study population	73
Figure 2-5	Immunosuppressive regimen among the study	73
	population	
Figure 2-6	HLA match between donors and recipients of the study population	74
Figure 3-1	Gender distribution among the two study groups	76
Figure 3-2	Prevalence of HTN among the two study groups	76
Figure 3-3	Prevalence of DM among the two study groups	76
Figure 3-4	Donor –recipient relationship (related, non related) among the two study groups	77
Figure 3-5	Gender distribution of donors among the two	77
	study groups	
Figure 3-6	Prevalence of HCV among the two study groups	77
Figure 3-7	Prevalence of HBV among the two study groups	78
Figure 3-8	HLA match among the two study groups	78
Figure 3-9	Immunosuppression regimen among the two	78
	study groups	
Figure 4-1	A case of acute active rejection type IA show moderate tubulitis	79
Figure 4-2	A case of acute active rejection type IB show	80
	marked interstitial lymphocytic infiltration	
Figure 4-3	A case of acute active rejection type IA show	80
	moderate tubulitis and tubular injury with	
	vacuolations	
Figure 4-4	A case of renal transplantation shows mild to	80
	moderate interstitial fibrosis, mild lymphocytic	

	infiltration and ischemic changes in the	
	glomeruli	
Figure 4-5	A case of acute active rejection type IIB	81
	(vascular rejection) show moderate arteritis and	
	marked lymphocytic infiltration	
Figure 5-1	Histopathological analysis of the study group B	85
Figure 5-2	Gender distribution among the different	85
	histopathological subgroups of the study group B	
Figure 5-3	Prevalence of diabetes among the different	85
	histopathological subgroups of the study group B	
Figure 5-4	Prevalence of hypertension among the different	86
	histopathological subgroups of the study group B	
Figure 5-5	Donor –recipient relationship (related, non	86
	related) among the different histopathological	
	subgroups of the study group B	
Figure 5-6	Gender distribution of donors among	86
	the different histopathological subgroups of the	
	study group B	
Figure 5-7	Immunosuppression regimen among	87
	the different histopathological subgroups of the	
	study group B	
Figure 5-8	Age of donors among the different	87
	histopathological subgroups of the study group B	
Figure 5-9	Age of recipients among different	87
	histopathological subgroups of the study group B	
Figure 5-10	Hemoglobin at time of allograft biopsy among	88

	different histopathological subgroups of the	
	study group B	
Figure 5-11	Mean creatinine at time of allograft biopsy	88
	among different histopathological subgroups of	
	the study group B	
Figure 5-12	Mean time of allograft biopsy among different	88
	histopathological subgroups of the study group B	
Figure 5-13	Mean duration of heamodialysis pre	89
	transplantation among different histopathological	
	subgroups of the study group B	
Figure 6-1	Graft survival curve of the study population	90
Figure 6-2	Graft survival curve of the study group A	91
Figure 6-3	Graft survival curve of the study group B	92

Introduction

Renal transplantation is the standard of care for patients with end-stage renal disease (U.S. Renal Data System, USRDS 2007 - Danovitch, GM, 2010) and must be discussed with patients with advancing chronic kidney disease (CKD). Recent improvements in kidney transplantation have been driven largely by lower acute rejection rates and better long-term graft survival attributed to immunosuppressive agents (Yang, 2006). New strategies have emerged to minimize the side effects of immunosuppression therapy and the risks of infection, malignancy, chronic allograft dysfunction, and cardiovascular disease (Cole, et al., 2008 - Vanrenterghem, et al., 2008 -Matas, et al., 2008). The preparation of CKD patients for renal transplantation should start from the time of its recognition and should occur in parallel with efforts to prevent and delay its progression (*Danovitch*, *GM*, 2010). The improved life expectancy and quality-of-life benefits of transplantation over dialysis therapy have attracted an increasing number of patients to the transplantation option; ideally, patients are evaluated for and undergo transplantation before the initiation of dialysis treatment (Danovitch, GM, 2010).

Renal transplantation is a successful therapy for end-stage renal failure. With the increase in patients entering the waiting lists and the lack of similar increase in donor availability, the long-term success of transplantation is a pressing clinical need. This will help to reduce the number of patients entering the waiting list due to the failure of a first transplant. New immunosuppressive drugs have been very successful in improving short-term allograft survival and there is emerging data on some improvement in long-term survival (Hernandez-Fuentes, M.P. and Lechler, R.I, 2005).

Nonetheless, late deterioration of allografts remains an important problem, particularly in view of the increasing demand for transplants. Kidney and heart allografts currently fail at a rate of 5 % each year post-transplantation (*Hernandez-Fuentes*, *M.P. and Lechler*, *R.I*, 2005).

The most common complication of renal transplantation is allograft dysfunction, which in some cases leads to graft loss. Although there is a wide intercenter variability, data from the United States indicate that overall one-year unadjusted survival of a renal allograft is approximately **89** % for a deceased donor kidney and approximately **95** % for a living donor kidney (*Kadambi PV, and Brennan DC, 2011*).

A number of risk factors have been identified for lower one-year deceased donor renal allograft survival. These include prior sensitization with more than 50 % panel reactivity, the presence of delayed graft function (defined as the requirement for dialysis during the first week after transplantation), the number and severity of rejection episodes, second or third transplant, donor age less than five or greater than 60 years, greater degrees of HLA mismatching, and allograft dysfunction at discharge (plasma creatinine concentration above 2 mg/dL) (*Kadambi PV*, and Brennan DC, 2011).

The causes of renal allograft dysfunction vary with the time after transplantation. These periods are usually classified as *immediate* (zero to one week postsurgery), *early* (1 to 12 weeks postsurgery), *late acute* (after three months), and *late chronic* (years). Renal failure persisting after transplantation is called delayed graft function (*DGF*). The principal underlying causes of kidney allograft dysfunction immediately after transplantation include post-ischemic acute tubular necrosis (ATN), volume depletion, thrombosis of the renal artery or vein, and post-renal causes (*Irish*

WD, et al., 2003 - Schnuelle P, et al., 2009). Among patients with initial graft function who then develop renal insufficiency (1 to 12 weeks posttransplantation), the major causes in this setting are calcineurin inhibitor toxicity, acute allograft rejection, urinary obstruction, infection. hypovolemia, and recurrent disease. Acute allograft dysfunction that develops more than three months after transplantation is most commonly due to calcineurin inhibitor toxicity, acute allograft rejection, urinary obstruction, volume depletion, recurrent disease, and de novo renal disease. Slowly progressive renal disease that occurs over a period of years after renal transplantation (often associated with persistent proteinuria) most commonly results from chronic allograft nephropathy, calcineurin inhibitor nephrotoxicity, hypertensive nephrosclerosis, viral infections, and recurrent or de novo renal disease (Nickeleit V, et al., 2000 - Chadban S, 2001-EBPG Expert Group on Renal Transplantation, 2002 - Kadambi PV, and Brennan DC, 2011).

The causes of renal allograft loss have changed with the introduction of new immunosuppressive agents. In the pioneer era of transplantation most renal allografts were lost during the first year after transplantation due to acute rejection episodes. Nowadays, chronic allograft nephropathy became the leading cause of graft loss. CAN and patient death with allograft function are the 2 major causes of renal allograft loss after the first year, accounting for 80 % or more of cases (*Kreis HA*, and Ponticelli C., 2001). According to current estimates from the United Network for Organ Sharing (UNOS), the half-lives for renal allografts performed in 1995 and 1996 from living and cadaveric donors are 15.3 and 10.4 years, respectively (*Yang*, 2006). Consequently, much attention has been focused on better understanding the causes of CAN and patient death with a functioning allograft in an attempt to