Hepatoma-Specific AFP (H-S AFP) in the Diagnosis of Hepatocellular Carcinoma

Thesis

Submitted for Fulfillment of the Master Degree in Tropical Medicine

By
Nehal Rashad Mohammed
MB. B.Ch
Faculty of Medicine— Cairo University

Under Supervision of

Prof.Dr. Mohammed Serag Eldin Zakaria

Professor of Tropical Medicine

Faculty of Medicine – Cairo University

Dr. Iman Mohammed Hamza
Assistant Professor of Tropical Medicine
Faculty of Medicine - Cairo University

Dr. Dina Farook Elgayar
Assistant Professor of Chemical and Clinical Pathology
Faculty of Medicine-Cairo University

Faculty of Medicine Cairo University 2011

First and foremost, I thank God for helping and guiding me in accomplishing this work.

I would like to express my sincere gratitude to Prof. Dr. Mohammed Serag Eldin Zakaria, professor of Tropical Medicine, Faculty of Medicine, Cairo University, , for his great support, his active guidance and overwhelming kindness throughout this work.

A special tribute to Prof. Dr. Iman Mohammed Hamza, Assistant Professor of Tropical Medicine, Faculty of Medicine, Cairo University, for her sincere supervision, stimulating views and faithful advice.

I must extend my warmest gratitude to Prof. Dr. Dina Farook Elgayar Assistant professor of Chemical and Clinical pathology, Faculty of Medicine, Cairo University, for his great help and support to me.

Finally, no words can express my deepest appreciation and gratitude to my family for their never ending support and care.

Nehal Rashad

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and it is one of the major causes of death. HCC is now a rather common malignancy in Egypt which usually develops on top of liver cirrhosis secondary to viral infection. HCC diagnosis is a multistage process including clinical, laboratory, imaging and pathological examinations. The AFP diagnostic accuracy is unsatisfactory and questionable because of low sensitivity, therefore there is a strong demand by clinicians for new HCC-specific biomarkers. The lens culinaris agglutinin (LCA)-reactive alpha-fetoprotein (AFPL3) is percentage of total AFP concentration and it is the major glycoform in the serum of HCC patients

<u>Aim:</u> The aim of this study was to investigate the potential role of Hepatoma-Specific AFP (AFPL3) as a diagnostic non-invasive marker for HCC, in order to add a beneficial diagnostic value in patients with low levels of alpha-fetoprotein (AFP) and suspected to have HCC.

Methods: This study was conducted on 27 HCC patients with and 30 cirrhotic patients with no evidence of HCC; as well as 31 healthy subjects who served as control group.

We determined the level of AFP and AFPL3 for all cases together with full clinical assessment, liver biochemical profile, conventional ultrasound (US), abdominal triphasic CT scan.

Results: We found that there was positive correlation between AFPL3 and total AFP, also AFPL3 was significantly elevated in the HCC group comparing to cirrhosis and control groups. The higher total AFP the higher AFPL3 percentage. The diagnostic sensitivity of AFP at a cutoff 22.6 ng/ml was 83% and the specificity was 83%. The cutoff level of AFPL3 for diagnosis of HCC in this study was 5%, with a sensitivity and

specificity of 96% and 83% respectively. There was a significant elevation of AFPL3 with patient whose total AFP level (10-200) with increasing specificity and PPV to100% at cut off 3.8%. There was no positive correlation between AFPL3 and the number or the size of hepatic focal lesions in HCC patients.

Conclusion:

- AFP-L3 is a useful adjunct marker in the diagnosis of HCC
- In the grey zone patients where AFP determination is alone clueless in the diagnosis of HCC, the addition of AFP-L3 has a 100 % specificity and 100% PPV
- Outside the grey zone patients AFP may suffice in the diagnosis of HCC, where AFP-L3 is not detectable if total AFP is less than 10 ng/dl and if total AFP is more than 200 it would obviously trigger calling for another confirmatory modality.
- AFP-L3 offers no correlation to the clinical or ultrasonographic features of tumors

Key words:

- Hepatocellular carcinoma (HCC).
- Alpha-fetoprotein (AFP).
- Hepatoma-Specific AFP (AFPL3).

List of Contents

Subject	Page	
List of Abbreviations		
List of Tables		
List of Figures	VI	
Introduction		
Aim of the Work	5	
Review of Literature:		
Chapter (1): Epidemiology of HCC	6	
Chapter (2): Presentation and Natural History of HCC	27	
Chapter (3): Laboratory and Radiological Diagnosis of HCC	41	
Patients and Methods		
Results	94	
Discussion	120	
Summary	133	
Conclusion	136	
Recommendations		
References	138	
Arabic Summary	1	

List of Abbreviations &

List of Abbreviations

AASLD	American Association for the Study of Liver
	Disease
AFB1	Aflatoxin B1
AFP	Alpha fetoprotein
AFP mRNA	Alpha fetoprotein mRNA
AFPL3	Alpha fetoprotein L3
AJCC	American Joint Committee on Cancer
ALT	Alanine transaminase
AST	Aspartate transaminase
BCCLC	Barcelona Clinic Liver Cancer
CCDS	Color code Duplex sonograph
CEA	Carcinoembryonic antigen
CLDs	Chronic liver disease
CLIP	Cancer of the Liver Italian Program
CT	Computerized tomography
CTA	Computerized tomography arterigraphy
CTAP	Computerized tomography arterioportography
DCP	Des-γ-carboxy prothrombin
ETs	Endothelins
FNA	Fine needle aspiration

GGT	Gamma glutamyl transpeptidase
GGT mRNA	Gamma glutamyl transferase mRNA
HBsAg	Hepatitis B virus surface antigen
HBV	Hepatitis B virus
НСС	Hepatocellular carcinoma
HCV	Hepatitis C virus
H-S AFP	Hepatoma –Specific AFP
IARc	International Agency for research on cancer
IGF-II	Insulin-like growth factor β
IL8	Interleukin-8
IOUS	Intraoprative ultrasound
LC	Liver cirrhosis
LCA	Lens-culinaris agglutinins
LCSGJ	Liver cancer study group of Japan
MAGE	Melanoma antigen gen
MRI	Magnetic resonance imaging
NAFLD	Non-alcoholic fatty liver disease
NASH	Non-alcoholic steatohepatitis
P53	Protein 53
PCR	Polymerase chain reaction
PCT	Porphyria cutanea tarda

List of Abbreviations &

PET	Positron emission tomography
PIVKA	Prothrombin induced by vitamin K absence II
PPV	Positive predictive value
RTPCR	Reverse transcription PCR
TGF-B1	Transforming growth factor beta1
TNM	Tumor- nodes-metastasis
TSH	Thyroid stimulating hormone
VIP	Vasoactive intestinal peptide

List of Tables

Table No.	Title	Page
Table (1)	Global frequency of new cases of	9
	hepatocellular carcinoma	
Table (2)	HCC risk development factors	11
Table (3)	Paraneoplastic syndromes	34
	associated with HCC	
Table (4)	Definition of the AJCC/UICC	37
	TNM Classification by the	
	International Union against Cancer	
	(UICC)	
Table (5)	Definition of the LCSGJ TNM	38
	classification by the Liver Cancer	
	Study Group of Japan and the JIS	
	scoring system	
Table (6)	Diseases associated with increased	43
	serum AFP concentration	
Table (7)	Diagnostic values of AFP as HCC	46
	biomarker	
Table (8)	EASL consensus diagnostic criteria	79
	for HCC	
Table (9)	Diagnostic criteria for HCC	81
Table (10)	Modified Child score	86
Table (11)	Steiner-Edmondson grading system	90
Table (12)	Demographic features of the	95
	studied groups	

List of Tables 🗷

Table No.	Title	Page
Table (13)	Comparison of clinical features of	97
	the studied Patients	
Table (14)	Haematological tests of the studied	98
	groups	
Table (15)	Liver biochemical profile of the	99
	studied patients	
Table (16)	Child classes of the HCC and LC	101
	patients	
Table (17)	Sonographic findings of the studied	102
	patients	
Table (18)	Ultrasonographic characteristics of	104
	the focal hepatic lesions in HCC	
	patients	
Table (19)	Median levels of AFP and AFPL3	106
	in studied groups	
Table (20)	Comparison between Child classes	104
	and AFP, AFPL3 in studied	
	patients	
Table (21)	The sensitivity, specificity, positive	105
	predictive value and negative	
	predictive values of total	
	AFPandAFPL3 in HCC and	
	cirrhotic patients	
Table (22)	Categorizing the patients according	110
	to AFP level	

List of Tables 🗷

Table No.	Title	Page
Table (23)	Comparison of AFPL3 level in	110
	relation to AFP levels	
Table (24)	Shows sensitivity, specificity,	112
	positive predictive value and	
	negative predictive values	
	of AFPL3 in subgroup of patients	
	with AFP level between 10ng/ml to	
	200ng/ml	
Table (25)	Correlation between AFP level and	114
	other parameters in the studied	
	patients	
Table (26)	Correlation between AFPL3 level	115
	and other parameters in the studied	
	patients	
Table (27)	Correlation between AFPL3 with	117
	number & size of focal lesions in	
	HCC patients	
Table (28)	Summary of total AFP and AFPL3	119
	values	

List of Figures &

List of Figures

Figure No.	Title	Page
Figure (1)	The Barcelona Clinic liver cancer staging system	39
Figure (2)	The diagnostic strategy after detection of hepatic nodule by U/S	82
Figure (3)	Demographic features of the studied groups	95
Figure (4)	Demographic features of the studied groups	96
Figure (5)	Liver biochemical profile of the studied patients	99
Figure (6)	Child score among cases with HCC and liver cirrhosis	101
Figure (7)	Echogenicity among cases with HCC	104
Figure (8)	ROC curve for total AFP and AFPL3 (HCC versus cirrhosis).	108
Figure (9)	Comparison of AFPL3 values in relation to AFP values	111
Figure (10)	ROC curve for AFPL3in relation to AFP level (10-200).	112
Figure (11)	Correlation between AFPL3 and AST in HCC patients	115
Figure (12)	Correlations between AFP and AFPL3 in HCC groups	118

Introduction

Hepatocellular carcinoma (HCC) is the fifth most commen cancer in the world with a 5 year survival rate of less than 5% and an incidence of at least one million new patients per year (*Bruix et al.*, 2004).

It is the most common primary malignant tumor of the liver (approximately 85-90%) (*El Serag & Rudolph, 2007*).

HCC incidence rate has been increasing over the last two decades of 20th century. In the United States, the reported incidence has increased to 4.7/100,000. The male population, both black and white, is primarily affected. However, the incidence of HCC in eastern Asia and middle Africa is more than five times that of North America. Furthermore, from 1981 to 1985 the peak incidence of HCC occurred in patients 80 to 84 years of age, whereas from 1991 to 1995 the peak was noted in persons 74 to 79 years of age. The shift in incidence toward younger persons seen over the last two decades coincides with the prevalence of hepatitis C virus infection (*Jorge and Marrero*, 2003).

Incidence of HCC in Egypt is currently increasing, which maybe the result of a shift in the relative importance of HBV and HCV as primary risk factors. HCC is the second most frequent cause of cancer incidence and mortality among men in

Egypt .Hospital based studies have reported an increase in Egypt (>95% asHCC), from 4.0% in 1993 to 7.3% in 2003 (*El-Zayaadi et al.*, 2005).

Nowadays HCC diagnosis is a multistage process including clinical, laboratory, imaging and pathological examinations. The prognosis of HCC is mostly poor, because of detection at an advanced, non-resectable stage. Potentially curative treatment (surgery) is limited and really possible only for cases with small HCC malignancies. For this reason, more effective surveillance strategies should be used to screen for early occurrence of HCC targeted to the population at risk. So far, the generally accepted serological marker is α -fetoprotein (AFP). Its diagnostic accuracy is unsatisfactory and questionable because of low sensitivity, therefore there is a strong demand by clinicians for new HCC-specific biomarkers (Stefaniuk et al., 2010).

Alpha fetoprotein (AFP) is a fetal specific glycoprotein produced primarily by the fetal liver. Normally, its serum concentration falls rapidly after birth and its synthesis in adult life is repressed. However, greater than 70% of HCC patients have a high serum concentration of AFP because of the tumor excretion. Forty years after its discovery, serum AFP remains a most useful tumor marker in screening HCC patients. The normal range for serum AFP levels is 10-20 ng/mL and a level