DEVELOPING NEW ANALYTICAL METHODS FOR DETERMINATION OF SOME CHEMICALS IN DRUG FORMULATIONS AND LAB WASTEWATER WITH PROPOSAL FOR TREATMENT

Thesis presented by

Ashgan Youssef Hashem

B.SC. (Geophysics), Faculty of Science, Suez canal University, 1999

A Thesis Submitted In Partial Fulfillment

Of

The Requirement of the Master Degree

In

Environmental Science

Department of Environmental Basic Science Institute of Environmental Studies and Research Ain Shams University

DEVELOPING NEW ANALYTICAL METHODS FOR DETERMINATION OF SOME CHEMICALS IN DRUG FORMULATIONS AND LAB WASTEWATER WITH PROPOSAL FOR TREATMENT

Thesis presented by

Ashgan Youssef Hashem

B.SC. (Geophysics), Faculty of Science, Suez canal University, 1999

A Thesis Submitted In Partial Fulfillment

Of

The Requirement of the Master Degree

In

Environmental Science
Department of Environmental Basic Science

Under the supervision of:

Prof. Dr. Mostafa M. H. Khalil

Prof. of Inorganic Chemistry, Faculty Of Science AinShams University

Dr. Taha A. Azim M. A. Razek

Ass.Professor of Environmental Analytical Chemistry Institute of Environmental Studies and Research AinShams University

Dr. Mohamed Sultan Mohamed

Researcher, National Organization of Drug Control And Research

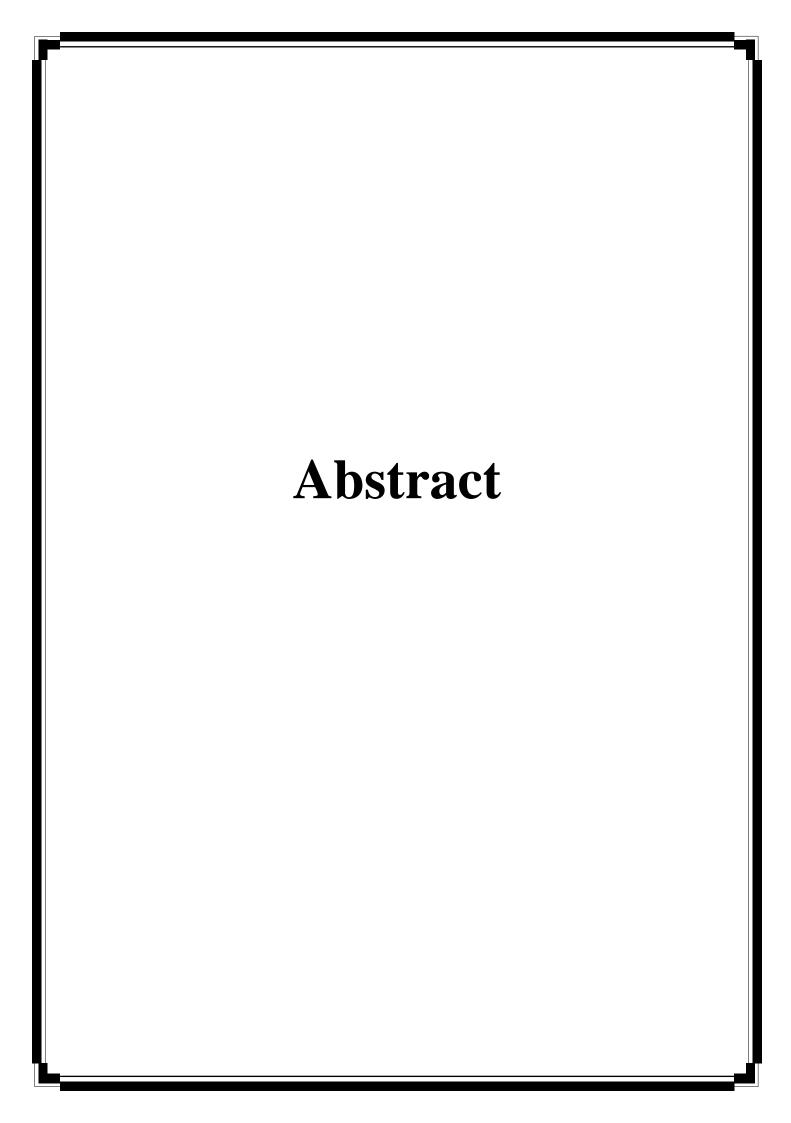
Acknowledgement

First and above all, I thank Allah (subhana wa taala) for endowing me with health, patience, and knowledge to fulfill this thesis.

I would like to pay special thankfulness, warmth and appreciation to the persons below who made my research successful and assisted me at every point to cherish my goal:

Prof. Dr. Mostafa M. H. Khalil, professor of inorganic chemistry, Faculty of Science, Ain Shams University, for his vital support and assistance. His encouragement made it possible to achieve the goal.

Dr. Taha Abd El Azim, Assistant professor of Environmental chemistry, Institute of Environmental Studies and Research, Ain Shams University, for his extreme patience, assistance and guidance.


Dr. Enas Abdel Hakim Amer, Researcher, National Organization for Drug Control and Research, whose help and sympathetic attitude at every point during my research helped me to work in time.

All my colleagues in National Organization for Drug Control and Research especially TLC and GIT laboratories.

I would like to acknowledge with gratitude, the support and love of my family- my parents and my brothers Mohammed and Ali- they were always supporting me and encouraging me with their best wishes.

Thank you

Ashgan Youssef

Abstract

Name of candidate: Ashgan Youssef Hashem

Title of the thesis: Developing New Analytical Methods for Determination of Some Chemicals in Drug Formulations and Lab wastewater with Proposal for Treatment

Recent advances in analytical methods have been mirrored by our increased ability to detect and quantify organic contaminants at trace levels, or in highly complex matrix as in wastewater. Pharmaceutical compounds are generally present in parts –per- trillion or parts- per- billion levels.

Questions regarding persistence and long term adverse effects of pharmaceuticals in the environment have been raised. There are low drug concentrations in the environment that have undesirable ecological and potentially human health effects.

New, simple, rapid, accurate and sensitive methods have been suggested for determining three commonly used antidepressant drugs. They are namely; tianeptine sodium (TIA), duloxetine hydrochloride (DUL) and fluoxetine hydrochloride (FLU), respectively,in their bulk powder and pharmaceutical preparations. They are measured as well as in combination in lab wastewater.

High performance liquid chromatography (HPLC) is the most powerful and versatile instrumental technique used for detection and quantitation of TIA, DUL and FLUby using C_8 column, mobile phase: (sodium acetate: acetonitrile) (60:40, v/v)pH 3.85 with a flow rate: 2 ml/min at wavelength: 231 nm. The retention timeswere(t_R = 3.016 min) for TIA, (t_R = 3.714 min) for DUL, and (t_R = 4.823 min) for FLU, respectively.

The first derivative ratio spectra was based on determination of one drug in the presence of the other to eliminate interference. The amplitude in the first derivative of the corresponding ratio spectra at 327.8nm, 252.4nm, were selected to determine TIA, and FLU, respectively, using DUL on (10 μ g/ml) as divisor, and DUL showed amplitude at 255.8nm, 238.4 nm using TIA (6 μ g/ml) or FLU (40 μ g/ml) as devisor.

Degradation of the drugs occurred by using the advanced oxidation process presented in the presence of titanium dioxide as a photocatalyst in the presence of UV irradiation led to destruction of the pollutants to simpler molecules.

Key words:Drugs, Duloxetine, Tianeptine, Fluoxetine, derivative ratio, Titanium dioxide, photocatalsis, wastewater, treatment.

	CONTENTS	page
ABST	RACT	i
LIST	OF FIGURES	iii
LIST	OF TABLES	vi
LIST	OF ABBREVIATION	viii
CHAI	PTER 1. INTRODUCTION AND LITERATURE REVIEW	1
1.1.	Classification of antidepressants	3
1.2.	Action mechanisms of antidepressants	6
1.3.	Analytical methods used for determination of the antidepressant	6
	drugs in environmental matrices	
1.4.	Wastewater Treatment	10
1.5.	What is Titanium Dioxide?	13
1.6.	Mechanism of TiO ₂ photocatalysis	14
1.7.	Characteristics and Analytical methods used for determination of the	17
	investigated compounds	
1.7.1.	Tianeptine	17
1.7.2.	Duloxetine	19
1.7.3.	Fluoxetine	22
Aim o	f the Work	25
CHAI	PTER 2. MATERIALS AND METHODS	26
2.1. G	eneral consideration	26
2.2. A	pparatus	26
2.3. Sa	amples	27
2.3.1.	Pure samples	27
2.3.2.	Market samples	27
2.4. C	hemicals and reagents	28
2.5. Pi	reparations	28
2.5.1.	standard stock solutions	28
2.5.2.	mobile phase	28
	laboratory prepared mixture for HPLC	28
	standard stock solutions of the devisors	29
	laboratory prepared mixture for first derivative ratio	29
	1. Duloxetine and Tianeptine	29
	2. Duloxetine and Fluoxetine	29
	3. Tianeptine and Duloxetine	29
	4. Fluoxetine and Duloxetine	30
	djusting chromatographic conditions	30
	etermination of Duloxetine, Tianeptine and Fluoxetine in bulk powder HPLC method	30
_	Determination of Duloxetine, Tianeptine and Fluoxetine in their	31
	aceutical formulations using HPLC method.	
-	Determination the wavelength of the measurements for first derivative	31
ratio:	Ç	
2.9.1.	For Duloxetine in the presence of Tianeptine	31
	For Duloxetine in the presence of Fluoxetine	32
	For Tianeptine in the presence of Duloxetine	32
	For Fluoxetine in the presence of Duloxetine	32
	Determination of mixtures in bulk powder using first derivative of the	33
	pectra method.	
	General procedure	33

(A) For DUL	_
	34
(B) For TIA	34
(C) For FLU	34
2.11.2. First derivative ratio method	3:
(A) DUL/TIA	33
(B) DUL/ FLU	33
(C) TIA/DUL	3:
(D) FLU/ DUL	30
2.12. Photodegrdation	30
CHAPTER 3: RESULTS AND DISCUSSION	33
3.1.HPLC method	33
(A) For DUL	4.
(B) For TIA	4
(C) For FLU	4
Validation of the method	5
3.2. First derivative ratio method	5
(A) DUL/TIA	5
(B) DUL/FLU	6
(C)TIA/DUL	6
(D) FLU/DUL	6.
Validation of the method	7
4. Application to environmental analysis	7
5.Photodegradation of the drugs using TiO ₂	7
CONCLUSION	8
SUMMARY	8
REFERENCES	8
ARABIC SUMMARY	9
ARABIC ABSTRACT	

List of Figures

No.	Title of figure	Page
1	Fate of pharmaceutical in the environment	2
2	(a) Positions of valence(VB) and conduction (CB) bands	13
	in semiconductors, (b) multifunction of titanium	
	dioxide.	
3	Simplified mechanism for the photo-activation of a semiconductor catalyst.	15
4	Figure 4. Some reactions that can occur on illumination of ${\rm TiO_2}$	17
5	Chromatogram of TIA (t R= 3.016 min), DUL (tR=	38
	3.714 min), and FLU (tR= 4.823 min).	
6	Effect of the increasing of acetonitrile	40
7	Peak resolution at increasing the molarity of buffer	40
8	Effect of pH	41
9	Effect of using Zorbax SB- C ₁₈ (250x4.6 mm i.d.), 5 μm	41
	column	
10	Effect of using Thermo BDS HypersilC ₁₈ (250x4.6 mm	42
	i.d.), 5 µm column	
11	Effect of using Nucleosil 100-5- C ₁₈ (150x4.6 mm i.d.),	42
	5 μm column	
12	Calibration curve for determination of DUL over	43
	concentration range of (1-100) µg/ml using HPLC	
	method.	

13	Calibration curve for determination of TIA over	45
	concentration range of (5-200) µg/ml using HPLC	
	method.	
14	Calibration curve for determination of FLU over	47
	concentration range of (5-100) µg/ml using HPLC	
	method.	
15	Zero order spectrum of DUL(14 μ g/ml) shows λ_{max} at	58
	289nm, TIA (10 μ g/ml) shows λ_{max} at 276.7nm	
16	Zero order spectrum of DUL(14 μ g/ml) shows λ_{max} at	59
	289nm, FLU (10 μ g/ml) shows λ_{max} at 264.3nm	
17	First derivative of the ratio spectra of different	60
	concentrations of DUL/ TIA (6-300 µg/ml) at 255.8nm	
	using TIA as devisor.	
18	Calibration curve for determination of DUL/TIA	61
	mixture over the concentration range (6-300)µg/ml	
	using first derivative ratio at 255.8nm.	
19	First derivative of the ratio spectra of different	62
	concentrations of DUL/ FLU (5-300)µg/ml at 238.4nm	
	using FLU as devisor.	
20	Calibration curve for determination of DUL/FLU	63
	mixture over the concentration range (5-300)µg/ml	
	usingfirst derivative ratio at 238.4nm.	
21	First derivative of the ratio spectra of different	64
	concentrations of TIA/ DUL (14-240)µg/ml at 327.8 nm	
	using DUL as devisor.	
22	Calibration curve for determination of TIA/DLU	65

	mixture over the concentration range (4-240)µg/ml	
	using first derivative ratio at 327.8nm.	
23	First derivative of the ratio spectra of different	66
	concentrations of FLU/ DUL (5-300)µg/ml at 252.4 nm	
	using DUL as devisor	
24	Calibration curve for determination of FLU/DLU	67
	mixture over the concentration range (5-240)µg/ml	
	using first derivative ratio at 252.4nm.	
25	The effect of TiO ₂ on the degradation of DUL	78
26	The relationship between the absorbance and the time	80
	for DUL.	
27	The absorbance of DUL before irradiation by using	80
	HPLC technique.	
28	The absorbance of DUL after irradiation by using HPLC	81
	technique.	
29	The absorbance of TIA before irradiation by using	81
	HPLC technique.	
30	The absorbance of TIA after irradiation by using HPLC	82
	technique.	
31	The absorbance of FLU before irradiation by using	82
	HPLC technique.	
32	The absorbance of FLU after irradiation by using HPLC	82
	technique.	