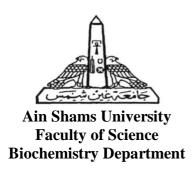
رِسْمِ اللهِ الرَّدُمنِ الرَّحِيمِ

"وَقُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ

وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِمِ الْغَيْمِ


وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِمِ الْغَيْمِ

وَالشَّمَاحَةِ فَيُنَبِّنُكُمْ رِمَا كُنْتُمْ تَعْمَلُونَ

وَالشَّمَاحَةِ فَيُنَبِّنُكُمْ رِمَا كُنْتُمْ تَعْمَلُونَ

حدَقَ الله العَظِيم

(التوقة 10)

Molecular Characterization of Petroleum Compounds-Degrading Bacteria Isolated from Petroleum Contaminated Soil

A Thesis submitted to Faculty of Science

Ain Shams University In Partial Fulfillment Of

Master Degree in Biochemistry

Submitted by

Mohamed Eraky Mohamed Wahballah

Biochemistry department B.Sc. in Biochemistry (2008) – Faculty of Science - Ain shams University

Under Supervision of

Prof.Dr. Ahmed Mohamed Salem

Professor of Biochemistry Faculty of Science Ain Shams University

Prof.Dr. Reda A.I. Abou Shanab

Professor of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research & Technology Applications, Alexandria

Dr. Abdel-Rahman B. Abdel-Ghaffar

Assistant professor of Biochemistry
Faculty of Science
Ain Shams University

Biochemistry Department Faculty of Science Ain Shams University 2015

Declaration

I declare that this thesis has been composed by myself and the work therein has not been submitted for a degree at this or any other university.

I would like to thank my family, in particular my mother and sisters. I have no doubt that without their patience and faith in me; I would have gone down that long difficult path which I began. I dedicate my thesis to them as well as my friends.

Mohamed Eraky Mohamed

Approval Sheet

Name: Mohamed Eraky Mohamed Wahballah

Title: Molecular Characterization of Petroleum Compounds-

Degrading Bacteria Isolated from Petroleum Contaminated Soil

Scientific Degree: B.Sc. in Biochemistry

Board of Scientific Supervision

Prof.Dr. Ahmed Mohamed Salem

Professor of Biochemistry Faculty of Science Ain Shams University

Prof.Dr. Reda A.I. Abou Shanab

Professor of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research & Technology Applications, Alexandria

Dr. Abdel-Rahman B. Abdel-Ghaffar

Assistant professor of Biochemistry Faculty of Science Ain Shams University

CONTENTS

Item No.	Subject	Page
	Acknowledgement Abstract List of Abbreviations List of Tables List of Figures Introduction Aim of the work	I III V VII VIII 1 3
	CHAPTER I	3
I. I.1. I.2. I.2.1. I.2.1.1. I.2.2. I.3. I.3.1. I.3.2. I.4. I.4.1. I.4.2. I.5.	Review of Literature Industrial pollution Petroleum pollution Source of petroleum pollution The gas stations as a source of contamination The effects of petroleum pollution Decontamination of petroleum pollution. Bioremediation as a cleaning technique Principles of bioremediation Microbial degradation of petroleum Hydrocarbons Microbial degradation of alkanes and cycloalkanes Microbial degradation of BTEX and PAHs. Some examples of Biormremdiation studies	4 4 5 6 9 10 13 16 17 19 21 24 27
I.6.	Molecular characterization of bacterial Isolates	33
I.7. II. II.1. II.2. II.2.1	The 16S rRNA gene. CHAPTER II Materials and Methods Sampling Enrichment culture and bacterial isolation Enrichment on crude oil.	34 37 37 38 39
II.2.2	Enrichment on BTEX	40
II.3.	Screening of petroleum compounds- degradi bacteria	41

CONTENTS

Item No.	Subject	Page
II.3.1.	Screening of BTEX degrading bacteria	42
II.3.2.	Screening of crude oil degrading bacteria	42
II.4.	Bacterial identification	44
II.4.1.	DNA extraction.	44
II.4.2.	PCR amplification of 16SrDNA and sequence analysis	46
II.4.3.	Detection of PCR product.	48
II.5.	Growth kinetics of each isolates under different environmental condition	50
II.5.1.	Growth on 2% crude oil	51
II.5.2.	Growth on BTEX	51
II.5.3.	Effect of pH on BTEX biodegradation	52
II.5.4	Effect of temprature on BTEX biodegradation	52
II.6.	Surface active properties.	53
II.6.1.	Emulsification assays.	54
II.6.2.	Surface tension	54
II.7.	Gas chromatographic analysis of degraded residual crude oil.	55
II.8.	Batch study for petroleum hydrocarbons removal from soil	57
II.9.	Chemical analysis of petroleum hydrocarbons of soil	58
	sample	
	CHAPTER III	
III	RESULTS	59
III.1.	Enrichment culture and bacterial isolate	59
III.2.	Screening of petroleum compounds- degrading bacteria	60
III.2.1.	Screening of BTEX degrading bacteria	60
III.2.2.	Screening of crude oil degrading bacteria	63
III.3.	Molecular characterization of selected bacterial isolates	64
III.4.	Growth kinetics of each isolates under different environmental conditions	73
III.4.1.	Growth on 2% crude oil	73
III.4.2.	Growth on BTEX	74
III.4.3.	Effect of pH on BTEX biodegradation	75
III.4.4.	Effect of temprature on BTEX biodegradation	75
III.5.	Surface active properties	80

CONTENTS

Item No.	Subject	Page
III.5.1	Emulsification assays	79
III.5.2.	Surface tension	80
III.6.	Gas chromatographic analysis of degraded residual crude	
	oil	81
III.6.1.	Analysis of degraded Total Petroleum Hydrocarbons	81
III.6. 2.	Analysis of some aliphatic (n-alkanes) compounds	82
III.6. 3.	Analysis of some Polyaromatic Hydrocarbons compounds	84
III.7.	Batch study for petroleum hydrocarbons removal from soil.	85
III.7.1.	Analysis of degraded Total Petroleum Hydrocarbons	85
III.7.2.	Analysis of some aliphatic (n-alkanes) compounds	86
III.7.3.	Analysis of some Polyaromatic Hydrocarbons compounds	88
IV.	CHAPTER IV DISCUSSION	90
V.	CHAPTER V Summery	100
VI.	CHAPTER VI Reference	104 I

ACKNOWLEDGMENTS

الحمد لله رب العالمين

Praise is to Allah, the lord of all creatures who taught man the whole science and the names of all things.

This Master would never have been completed without the efforts of several people who really I appreciate their instructive support.

I am greatly indebted to **Prof. Dr. Ahmed Mohamed Salem**, Professor of Biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, for his supervision, valuable advice and his kind help, reading and criticizing the manuscript and encourangement, his accuracy and precious comments made me fell enthusiastic to finish the thesis perfectly. His valuable guidance and ultimate support are greatly appreciated.

I would like to express my deep thanks to **Prof. Dr. Reda A. I. Abou shanab**, Professor of Environmental Biotechnologyt, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research & Technology Applications, Alexandria, who suggest the topic of this thesis and who meticulously supervised the execution of the experimental studies and was always present tremendous help in the preparation and revision of the manuscript. Thanks for his scientific guidance, valuable suggestions, brilliant ideas, undeniable help, moral support, provision of facilties and criticism throughout this study. I appreciate his support and understanding, which drove me to perform to my maximum potential and complete my degree. I am very proud to perform research under his supervision.

I am particularly indebted to **Dr. Abdel-Rahman B. Abdel-Ghaffar**, Assistant professor of Biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, for his valuable assistance and device, kind help and encourengement.

ACKNOWLEDGEMENTS

I wish to thank **Dr/Ahmed Hadad**, researcher of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research & Technology Applications, Alexandria, for his support and encourengement.

Sincere thanks to all my colleagues in the Genetic Engineering and Biotechnolgy Research institute, City of Scientific Research and Technology Applications.

I would like to thank whole heartedly my mother and family members whose love and unconditional support, both on academic and personal front, enabled me to see the light of this day.

Mohamed Eraky Mohamed

Name: Mohamed Eraky Mohamed Wahballah

Title: Molecular Characterization of Petroleum Compounds-Degrading Bacteria Isolated from Petroleum Contaminated Soil

ABSTRACT

There is a growing public concern over the soil and groundwater contamination by petroleum hydrocarbons, owing to rapid industrial development and its broad environmental distribution, which can reach soil, groundwater and air. Pollution by petroleum hydrocarbons is widespread as a result of accidental oil spills, leaking underground storage tanks, oil extraction, and processing operations, producing a significant environmental burden. Biodegradation is a natural process carried out by soil and aquatic microorganisms whereby organic wastes are biologically degraded under controlled conditions to a harmless state, or to levels below concentration limits. The main objective of this study was to isolate bacterial strains capable of the degradation of petroleum hydrocarbons in contaminated soil and to characterize these bacterial strains using biochemical and molecular techniques. A total of fifty-four bacterial cultures were isolated from a long term hydrocarbon contaminated soil. Five isolates designed RAM03, RAM06, RAM13, RAM17 and MS30 were selected based on their relatively higher growth on broth basal salt medium amended with high concentrations of crude oil or BTEX (as a sole source of carbon), emulsion index, surface tension, and degradation percentage. The bacterial isolates (RAM03, RAM06, RAM13, RAM17 and MS30) were identified as Ochrobactrum cytisi, Ochrobactrum

anthropi, Sinorhizobium meliloti 3 Ochrobactrum anthropi, and Ochrobactrum lupini respectively, according to the analysis of 16S rRNA gene sequence. The capability of these bacterial strains to degrade crude oil or BTEX was assessed under in vitro conditions, in culture medium and soil. The tested bacterial strains revealed a promising potential for bioremediation of petroleum oil contamination as they could degrade more than 84% of total petroleum hydrocarbons (TPH) in modified basal salt medium supplemented with 4 % crude oil after 30 day. Moreover four of these strains could remove 43.5 - 54 % of TPH from contaminated soil after 30 day. These bacteria could effectively remove both aliphatic and aromatic petroleum hydrocarbons, and they are able to produce bio-surfactant. These data indicate that these isolates may have the potential for use in bioremediation of petroleum hydrocarbon contaminated soil.

LIST OF ABBREVIATIONS

A Anthrathene

B Benzene

bp Base Pair

BTEX Benzene, Toluene, Ethyl benzene and Xylenes

C Chatecol

CFU Colony Forming Unit

CTAB N-cetyl-N,N,N- Trymethyl Ammonium Bromide

E Ethylbenzene

EDTA Ethylenediaminetetraacetic acid

EI Emulsion index

EPA Environmental Protection Agency

ETBE Ethyl tert-butyl ether

FID Flame ionization detectore

GA Gentisic acid

GC–MS Gas chromatography mass spectrscopy

HMN 2,2,4,4,6,8,8-Heptamethylnonane

LB Luria Bertani

LUSTs Leaking underground storage tanks

MBSM Modified Basal Salt Medium

MCL Maximum Contaminant Level

mM Mili mole

LIST OF ABBREVIATIONS

mol Mole

MTBE Methyl tert-butyl ether

mV Milli volt.
nm Nanometer

NRC National Research Council

OH' Hydroxyl radicals

PAHs Polycyclic aromatic hydrocarbons

PCA Protochatechuic acid

PCR Polymerase Chain Reaction

Ph Phenantherene

PHA Polyhydroxyalkanoates

ppb Parts per billion

Py Pyrene

SA Salicylate

SDS Sodium Deodosyl Sulphate

T Toluene

TBA Tert-butyl alcohol

TBE buffer Tris Borate EDTA

TE buffer Tris EDTA

TPHs Total Petroleum Hydrocarbons

USTs Underground storage tanks

VOCs Volatile organic carbons

X Xylene

LIST OF TABLES

Table	Title	Page
Table (1)	The bacterial CFU/mg soil grown on the different petroleum hydrocabons after enrichment	59
Table (2)	The bacterial growth on 1.5% agar MBSM amended with different concentrations of Ethylbenzene, benzene, toluene, p-, m- and o-xylene respectively	61
Table (3)	Growth of the Bacterial isolates on MBSM amended with 200 mg/l of Benzene, Toluene, Ethylbenzene, m-, p- and o-xylene and on 100 mg/L BTEX mixture.	74
Table (4)	Emulsification index (E24) for supernatants of bacteria	79
Table (5)	The concentration of Polyaromatic hydrocarbons (ppm) after 30 day incubation period in 20g contaminated soil	89
Table (6)	Comparison between the degradation percentage of TPH of the crude oil in this study and some different recent reports of crude oil bioremediation	Appendix
Table (7)	The degradation percentage of aliphatic compounds of crude oil after 30 days of incubation period in MSM supplemented with 2% of crude oil reported by (Kumari et al., 2012)	Appendix

LIST OF FIGURES

Figure	Title	Page
Figure (1)	Fate of oil spilled at sea showing the main weathering processes	8
Figure (2)	Structural classification of some crude oil components	21
Figure (3)	Pathways, through which subterminal oxidation of alkanes yield two fatty acid moieties, which are metabolized further by beta-oxidation	22
Figure (4)	Pathway of diterminal alkane oxidation	23
Figure (5)	Schematic presentation of initial microbial attack and ring cleavage and genes involved in the respective reactions for PAHs and for BTEX	26
Figure (6)	Crude oil degradation % by different bacterial isolates	63
Figure (7)	The biodegradation of the crude oil in MBSM by the bacterial isolation after 13 days at 30°C.	64
Figure (8)	Agarose gel electrophoresis of genomic DNA of bacterial isolates and 1Kb DNA marker	65
Figure (9)	Agarose gel electrophoresis of amplified 16S rDNA products for the bacterial isolates and 1Kb DNA marker.	65
Figure (10)	Sequence alignment of the 16S rRNA of a representa strain RAM03 to <i>Ochrobactrum cytisi</i> strain DZST-9 ribosomal RNA gene	66
Figure (11)	Sequence alignment of the 16S rRNA of a representative strain RAM06 to <i>Ochrobactrum anthropi</i> strain T5 16S ribosomal RNA gene	
Figure (12)	Sequence alignment of the 16S rRNA of a representative strain RAM13 Sinorhizobium meliloti strain MED 16S ribosomal RNA gene	67 68