

Automatic Imaging System for Inspection of Pigmented Skin Lesions and Melanoma Diagnosis

By

Eng. Mariam Ahmed Mohamed Ismael Sheha

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

SYSTEMS AND BIOMEDICAL DEPARTMENT

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

Automatic Imaging System for Inspection of Pigmented Skin Lesions and Melanoma Diagnosis

By

Eng. Mariam Ahmed Mohamed Ismael Sheha

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

SYSTEMS AND BIOMEDICAL DEPARTMENT

Under the Supervision of

Ass. Prof. Dr. Amr Sharawy	Ass. Prof. Dr. Mai Mohamed Saeed Mahmoud Mabrok
Ass. Professor of System & Biomedical Engineering	Ass. Professor and Department head of Biomedical Engineering Department
System & Biomedical Department Faculty of Engineering, Cairo University	System & Biomedical Department Faculty of Engineering, Must University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

Automatic Imaging System for Inspection of Pigmented Skin Lesions and Melanoma Diagnosis

By

Eng. Mariam Ahmed Mohamed Ismael Sheha

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

SYSTEMS AND BIOMEDICAL DEPARTMENT

Approved by the
Examining Committee
Prof. Dr. Samia Abdel-Razek Mashali, External Examiner
Prof. Dr. Yasser Mostafa Kadah, Internal Examiner
Assist. Prof. Dr. Amr Abd El-Rahman Sharawy, Thesis Main Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

ACKNOWLEDGEMENTS

ALL my THANKS TO ALLAH

First and foremost, there are no enough words to express my thanks to ALLAH. I thank Allah (Subhana wa Taala) for endowing me with health, patience, and knowledge to complete this work. I thank Allah, the almighty, for giving me the strength to carry on this project and for blessing me with many great people who have been my greatest support in both my personal and professional life. I also would like to ask him that this project would be another tool to help in the treatment of skin cancer patients.

Thanks for everyone who helped me in completing this work. I'd like to submit my highest appreciation to my thesis advisor, Dr. Amr Sharway, for offering guidance and support during the years of research. And special thanks to Dr. Mai Mahmoud Mabrook, who suggested the topic, provided the platform and offered a constant support and supervision to complete the project.

Finally, I would like to express my deepest gratitude to my parents Mr. Ahmed Sheha and Mrs. Sahar Mahmoud, who always believed in me and never hesitate to provide support and motivation. Special thanks to my dear brother Dr. Yhya Sheha for always being around me throughout all the ups and downs I have been through, and my and sister Fatema El- Zahraa for her emotional and moral support, love and patience. Great thanks for my whole family and relative for their encouragement and prayers at all times, and all friends who support and help me through software tools specially Eng. Ahmed Fouad.

DEDICATION

This thesis is dedicated to my Mother "Sahar Mahmoud Ramdan" who had scarified by her own dreams to help and support me so I can achieve my dreams, supported me all the way since the beginning of my studies.

"This thesis is dedicated to all those who scarify for others happiness"

TABLE OF CONTENTS

ACKNOWLEDGMENT	I
DETECATION	II
TABLE OF CONTENT.	III
LIST OF FIGURES	VI
LIST OF TABLES	VIII
LIST OF ABREVIATIONS	IX
ABSTRACT	X
Chapter 1: INTRODUCTION	1
1.1 Introduction	1
1.2 Thesis Objective.	2
1.3 Thesis Organization.	3
Chapter 2: Medical Background and Literature Review	
2.1 Introduction	
2.2 Skin Properties	
2.2.1 Skin Structure.	
2.2.2 Skin Function	6
2.3 Background on Cancer	7
2.3.1 Cancer	7
2.4 Skin cancer	8
2.4.1 Risk factors	9
2.5 Pigmented SkinLesions.	10
2.5.1Non-Melanocytic lesions.	10
2.5.1.1 Benign Non-Melanocytic lesion.	
2.5.1.2 Malignant Non-Melanocytic lesion.	
2.5.2 Melanocytic lesions	
2.5.2.1 Benign Melanocytic lesion	
2.6 Skin Cancer Diagnosis.	
2.6.1 Dermoscopy or Epiluminescence Microscopy	
2.6.2 Computer Aided Diagnosis (CAD)	
2.7 Problem description.	
2.8 Literature Review	
2.9 Summary	
Chapter 3: Methodology	
3.1 Introduction	26

3.2 Main block Diagram	26
3.3 Materials and Data Acquisition	27
3.3.1 Image Acquisition	28
3.3.2 Implementation	29
3.4 Preprocessing	30
3.4.1 Image Preparation	30
3.4.2 Image Enhancement	30
3.4.3 Image Segmentation	31
3.5 Feature Extraction	36
3.5.1 Morphological Features	37
3.5.1.1Geometric Feature	37
3.5.1.2 Chromatic Feature	41
3.5.2 Texture Features	51
3.5.2.1 First order statistical features	52
-	54
•	59
3.6 Feature Selection	
3.6.1 F-Test	
3.6.2 T-Test	
3.6.3 Fisher Score	
3.7 Classification.	
3.7.1 Artificial neural networks ANN	
3.7.2 K-Nearest Neighbor (KNN)	
3.7.3 Support Vector Machine (SVM)	
3.8 Performance measure	
3.9 Summary	
Chapter 4: ABCD Model	
4.1 Introduction	
4.2 ABCD Definition	
4.3 Image Pre-processing and segmentation	
4.4ABCD Features Extraction	
4.4.1 Asymmetry (A)	
	83
4.4.2 Border (B)	84
	84
4.4.2.2 Border calculations.	85

4.4.3 Color (C)	85
4.4.3.1 Color Calculation.	85
4.4.4 Parameter (D)	87
4.4.4.1 Diameter	87
4.4.4.2 Differential Structure.	
4.5 Total dermoscopic score TDV	97
4.6 ABCD Model Presentation	99
4.7 Summary	99
Chapter 5: Experimental Results and Discussion	100
5.1 Introduction	100
5.2 Single Models	101
5.2.1 Geometric Approach.	101
5.2.1.1 Dermoscopic database	
5.2.1.2 Clinical images database	103
5.2.2 Chromatic Approach	105
5.2.2.1 Dermoscopic database.	105
5.2.2.2 Clinical images database	106
5.2.3 Texture on 7-color space Approach	108
5.2.3.1 Dermoscopic database	109
5.2.3.2 Clinical database	
5.2.4 Texture on RGB spaceApproach	112
5.2.4.1 Dermoscopic database	
5.2.4.1 Clinical database.	
5.3 Combined Model	117
5.3.1 Dual Approaches	120
5.3.1.1Dermoscopic database	120
5.3.1.2 Clinical database	
5.3.2 Multiple Approach	
5.3.2.1 Dermoscopic database	
5.3.2.2 Clinical database.	
5.3.3: ABCD Model.	
5.3.3.1Dermoscopic database	
5.3.3.1Clinical image	
5.4 Result's Discussion	
5.5 Summary	134
Chapter 6: Conclusions and Future Work	135
6.1 Conclusion.	135
(2 Estura Warler	135
6.2 Future Works	133
REFERENCE	

List Of Figures

Figure 2.1: Schematic structure of skin	7
Figure 2.2: Digital images of skin cancer	8
Figure 2.3: Tumor Development.	9
Figure 2.4: Seborrhoeic keratosis	11
Figure 2.5: Basel Cell Carcinoma	12
Figure 2.6: Squamous Cell Carcinoma	12
Fig 2.7: Facial Freckles image	13
Fig 2.8: Lentigo image	13
Figure 2.9: Different types of Melanocytic Nevi	14
Figure 2.10: Melanoma in site	15
Figure 2.11: Different types of invasive malignant melanoma	17
Figure 2.12: Schematic representation of Asymmetry, Border irregularity, Color	
variation and Diameter length on tumor respectively	18
Figure 2.13: Epiluminescence dermoscopy	19
Figure 2.14: Dermatoscope tool.	19
Figure 2.15: Statistics of Egypt's top 10 cancers in males, 2002-2007	21
Figure 3.1: Main block diagram	27
Figure 3.2: Malignant Melanoma Image in Clinical and Dermoscopic view	28
Figure 3.3: Image Enhancement process	31
Figure 3.4: Image contrast adjustment.	32
Figure 3.5: Threshold process	33
Figure 3.6: Tracing process	34
Figure 3.7: Centroid, bounding box and final lesion extraction representation	35
Figure 3.8: Schematic representation for image pre-processing steps	36
Figure 3.9: Parameters of segmented pigmented area bounding box	38
Figure 3.10: The RGB Color Cube	42
Figure 3.11: Malignant Melanoma - Dermoscopic image represented on RGB space	43
Figure 3.12: Malignant Melanoma - Dermoscopic image represented on YIQ space	44
Figure 3.13: Malignant Melanoma - Dermoscopic image represented on YCbCr space.	45
Figure 3.14: Malignant Melanoma - Dermoscopic image represented on HSI space	46
Figure 3.15: Single Hexagon HSV color Model	47
Figure 3.16: Malignant Melanoma - Dermoscopic image represented on HSV space	47
Figure 3.17: Malignant Melanoma - Dermoscopic image represented on Lab space	48
Figure 3.18: Malignant Melanoma - Dermoscopic image represented on Lab space	49
Figure 3.19: Malignant melanoma lesion represented by the 7 color spaces	51
Figure 3.20: Example of gray level co-occurrence matrix (GLCM)	54
Figure 3.21: Geometry directions of adjacency for calculating GLCM features	58
Figure 3.22: Texture features of 7-color spaces structure	61
Figure 3.23: P-value graph	63
Figure 3.24: T-test and P-value relation.	64
Figure 3.25: Brain Neuron.	66
Figure 3.26: Basic ANN model of a single neuron	67

List of Figures

Figure 3.27: Activation functions	68
Figure 3.29: Multi-layer feed-forward networks	69
Figure 3.30: SVM Classification	73
Figure 4.1: ABCD block diagram	80
Figure 4.2: Axis Points	82
Figure 4.3: Binary mask of the two halves	82
Figure 4.4: The lesion two axes	83
Figure 4.5: Border division in two eight segments	84
Figure 4.6: ELM image of a melanocytic lesion with several dermoscopic criteria	90
Figure 4.7: Process of detecting Irregular pigmented regions	91
Figure 4.8: Process of detecting Blue Veil	92
Figure 4.9: Process of detecting Structure less using HSV color space	93
Figure 4.10: Process of detecting Regression using luminance and Lab color space	94
Figure 4.11 ELM image of a melanocytic lesion with Atypical Pigmentation N.W	95
Figure 4.13: Process of detecting Atypical Pigmentation N.W	96
Figure 4.14: ABCD Model in GUI Form	99
Figure 5.1: Single and Combined Model approaches	100
Figure 5.2: Single Model Block Diagram	101
Figure 5.3: Accuracy chart of geometric features	104
Figure 5.4: Accuracy chart of chromatic approach	108
Figure 5.5: Accuracy chart of the 7-color spaces texture approach	112
Figure 5.7: Accuracy chart of texture analysis regarding un-segmented lesions	117
Figure 5.8: The Combined Model Block diagram	118
Figure 5.9: Dual Models Charts results	124
Figure 5.10: The Chart results of Multiple Approach	126
Figure 5.11: ABCD Model Charts results	130
Figure 5.12: Comparison Chart between Multiple and ABCD Model results	131

List Of Tables

Table 2.1: Skin types and different sun effect.	10
Table 4.1 Six possible colors of a lesion on the RGB color space	86
Table 4.2: Geometric features selected	88
Table 4.3: Texture features used for Dermoscopic and Clinical images	97
Table 4.4: Summary of ABCD findings and their relative weights	98
Table 5.1: Dermoscopic geometric features results according to F-test	102
Table 5.2: Dermoscopic geometric features results according to T-test	102
Table 5.3: Dermoscopic geometric features results according to Fisher score	102
Table 5.4: Clinical geometric features results according to F-test	103
Table 5.5: Clinical geometric features results according to T-test	103
Table 5.6: Clinical geometric features results according to Fisher score	103
Table 5.7: Dermoscopic chromatic features results according to F-test	105
Table 5.10: Clinical chromatic features results according to F-test	106
Table 5.11: Clinical chromatic features results according to T-test	107
Table 5.12: Clinical chromatic features results according to Fisher score	107
Table 5.13: Dermoscopic Texture (7 color spaces) features results according to F-test	109
Table 5.14: Dermoscopic texture (7 color spaces) features results according to T-test	109
Table 5.15: Dermoscopic texture (7 color spaces) features results according to Fisher Score	110
Table 5.16: Clinical texture (7 color spaces) features results according to F-test	110
Table 5.17: Clinical texture (7 color spaces) features results according to T-test	111
Table 5.18: Clinical texture (7 color spaces) features results according to Fisher score	111
Table 5.19: Dermoscopic texture (on RGB space) features results according to F-test	112
Table 5.20: Dermoscopic texture (on RGB) features results according to T-test	113
Table 5.21: Dermoscopic texture (RGB spaces) features results according to Fisher Score	114
Table 5.22: Clinical Texture (on RGB space) features results according to F-test	115
Table 5.23: Clinical Texture (on RGB) features results according to t-test	115
Table 5.24: Clinical texture (on RGB) features results according to fisher score	116
Table 5.25: Classification results of Chromatic and Geometric features for dermoscopic	121
Table 5.26: Dermoscopic classification results of Geometric and Texture features	121
Table 5.27: Dermoscopic classification results of Texture and Chromatic features	122
Table 5.28: Clinical classification results for Chromatic and Geometric features	122
Table 5.29: Clinical classification results for Geometric and Texture features	122
Table 5.30: Clinical classification results for Chromatic and Texture features	123
Table 5.31 Dermoscopic classification results of three features types	125
Table 5.32: Classification results of three features types upon clinical images	125
Table 5.33: Dermoscopic Classification results of ABCD using geometric features	127
Table 5.34: Dermoscopic Classification results of ABCD using texture features	128
Table 5.35: Dermoscopic Classification results of ABCD using differential Structures	128
Table 5.36: Clinical classification results of ABCD using geometric features	129
Table 5.37: Clinical classification results of ABCD using texture features	129
Table 5.38: Classification results of Single approaches.	132
Table 5.37: Classification results of Multiple Models	134

List of Abbreviations

CAD	Computer Aided Diagnosis
ANN	Artificial Neural Network
KNN	K-Nearest Neighbor
SVM	Support Vector Machine
TDV	Total Dermoscopic Value

UV Ultraviolet

BCC Basel cell carcinoma

SCC Squamous Cell Carcinoma ELM Epiluminescence microscopy GUI Graphical User Interface

ROI Region of Interest PSL Pigmented skin lesion

GLCMs Gray level Co-occurrence Matrices IDM Inverse difference moment normalized

MLP Multilayer Perceptron
MSE Mean square error
SSE Sum square error

Abstract

Skin cancer appears to be one of the most dangerous types among others by the presence of malignant melanoma as one of its forms. Malignant melanoma is the deadliest type of skin cancer and its incidence and mortality rates have been steadily increasing worldwide over the past decades. Clinicians usually found difficulties to differentiate between malignant melanoma and melanocytic nevus. A lot of effort has been made in the last two decades to enhance the clinical diagnosis of melanoma. Dermoscopy was the first non-invasive technique introduced for that purpose, where it allows magnified and clear visualization of skin morphological structure in vivo clinical examination. Depending on that other several clinical diagnosis algorithms were proposed such as pattern analysis, ABCD rule of dermoscopy, Menzies method, and 7-points checklist. Computerized monitoring of these algorithms improves the diagnosis of melanoma compared to simple naked-eye examination.

This thesis proposes computer-aided diagnosis of melanoma to provide quantitative and objective evaluation of skin lesion as opposed to visual assessment, which is subjective in nature. For the aim of globalizing that work, two different image sets are used to examine the system, a set of images acquired by standard camera represented by clinical images and another set of dermoscopic images captured from the magnified dermoscope. Images are enhanced and segmented to separate the lesion out of the background. Different features type such as geometric, chromatic, and texture features are extracted from the region of interest resulted from segmentation. Then, the most prominent features that can cause an effect are selected by different selection methods; which are F-test, T-test and the Fisher score method. Selected features are fed into three different classifiers, the Artificial Neural Network (ANN) that presented through two different techniques of classification, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM); which also presented by three different techniques of classification.

Adding to previously mentioned system; it had been interesting to design automated software for one of the applicable clinical diagnosis algorithm. The ABCD diagnosis system is a multiple model implementing different types of features, and classified by the

proposed classification methods and also by calculating Total Dermoscopic Value (TDV). The Performances of all those algorithms were measured by means of sensitivity, specificity, and accuracy. As data charts were displayed out of those terms to clarify the result comparison.

According to the different methods used for feature extraction, selection and classification, multiple experiments are conducted that makes the result field hard and complex. To simplify the process of result determination and discussion, experiments were categorized into single and multiplied models that present different approaches according to the features used for each. Results are analyzed for each approach then accuracy is compared. Finally, The approach achieved the best results is recommended for the purpose of melanoma diagnosis.