

Investigation and Comparison of Different Methods for High Precision Measurements of AC Voltage and Current

<u>By</u>

Eng. Rasha sayed Attiya Mohammed

A THESIS

Submitted in partial fulfillment of the requirements for the degree of M.Sc. in Electrical Engineering

Supervised by:

Prof. Dr. Mohamed Abdel-latif Badr Prof. Dr. Ibrahim M. Hassan Saad Dr. Mamdouh Mostafa M. Halawa

SUPERVISION SHEET

Investigation and Comparison of Different Methods for High Precision Measurements of AC Voltage and Current

<u>**By**</u>

Eng. Rasha Sayed Attiya Mohammed

A THESIS

Submitted in partial fulfillment of the requirements for the degree of M. Sc. In Electrical Engineering

Date: / / 2002

APPROVAL SHEET

Investigation and Comparison of Different Methods for High Precision Measurements of AC Voltage and Current

<u>**B**y</u>

Eng. Rasha Sayed Attiya Mohammed

A THESIS

Submitted in partial fulfillment of the requirements for the degree of M.Sc. In Electrical Engineering

Approved by: Signature

Prof. Dr. Ahmed Asad Mahmoud Faculty of Engineering – Ain Shams University-

Prof. Dr. Mohammed Mohammed Khodir National Institute for Standards (NIS)

Prof. Dr. Mohamed Abdel-latif Badr Faculty of Engineering –Ain Shams University-

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the requirements for the degree of M. Sc. in Electrical Engineering

The included work in this thesis was carried out by the author at Department of the Electrical & Electronic Measurements, the National Institute for Standards (NIS). No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Rasha Sayed

Date: October 2005

C.V.

Personal Information:

Name: Rasha Sayed Attiya Mohammed Ali

Date Of Birth: 2 August,1979

Nationality: Egyptian Marital Status: Married

Address: El-Zahraa, city in El Helmya

Dar El-Ala No.7

Tel. No.: (02) 6365597 **Mobile**: 0103342242

E-Mail: Rasha_sama79@hotmail.com

Qualification:

Bachelor in Electrical Engineering-2001

Power & Elec. Machine Department.

Faculty of Engineering – **Ain shams** University.

Grade of final year: **Excellent** General Grade: **Very Good**

Project:

Distribution In Big Building

Project Grade: Excellent

AKNOWLEDGMENT

I wish to express my deep gratitude and respect to my supervisors committee: Prof. Dr. Ibrahim Hasan Saad, Prof. Dr. Mohamed Abdel-Latif Badr and Dr. Mamdouh Mostafa Halawa for their guidance and support. Their helpful and valuable discussions were the core reason for accomplishing this work.

My deep gratitude goes to Prof. Dr. Ibrahim Hasan Saad for his precious advice. My very special thanks are dedicated to Dr. Mohamed Abdel-Latif Badr and Dr. Mamdouh Mostafa Halawa for his close following up, continuous advice and guidance all throughout the review of the work. My thanks and gratitude also are dedicated to every member of my family and my colleagues at the National Institute for Standards (NIS), Egypt for their patience and understanding all along the way.

ABSTRACT

The AC voltage measurements and the calibration of alternating voltages and currents embrace a wide range of equipment and topics. To meet these demands, much of the equipment and many of the methods in current use were developed in the 1960's. Special instruments have been developed in the Metrology field for the measurement of current and voltage over rather wide ranges.

Since there is no AC counterpart to the standard cell and Zener diode standards, measurement of AC quantities are made relative to these same standards. Most common types of accurate AC voltage measurements are classified into two categories, Direct devices (Electrostatics. Electrodynamics and Digital Multimeters) and Indirect devices (Electronic Device and Thermal Devices). Complete Comparison between the direct methods (DMMs) and indirect methods (Thermal elements) was investigated in this thesis.

A high sensitive precision digital multimeters (DMMs), 8½ digits, as an example of the direct method, was used to measure the AC voltage and current accurately at frequencies from 50 Hz to 20 kHz. Also, a single junction thermal voltage converter as an example of indirect method, which have a flat and known frequency response was used to measure the same ranges of currents and voltages at the same frequencies. In case of current measurements, special current shunts to transfer the applied current into potential difference were used. All practical experiments were performed under same conditions exactly.

Complete Comparison between the direct methods (DMMs) and indirect methods (Thermal elements) was practically and theoretically investigated in this thesis. Four categories of these responses were observed during the practical work (High accuracy-Low uncertainties, Low accuracy-Low uncertainties, High accuracy-High uncertainties, Low accuracy-High uncertainties). The overall results of the calculations of the uncertainty according to the ISO guide are given in details. They are given for all ranges of voltages and currents at all ranges of frequencies.

CONTENTS

Abstract Contents		<u>Page</u> vii
		viii
List of F	List of Figures	
List of T	List of Tables	
	Chapter 1	
	Introduction to Metrology	
1.1 Meta	rology Principles	1
1.1.1	Definition of Metrology	1
1.1.2	Importance of Metrolog	1
1.2 Mea	surement	2
1.2.1	Definition of Measurement	2
1.2.2	Objective of Measurement	2
1.2.3	Importance of Measurement	2
1.2.4	Fraceability of Measurement	3
1.2.5	Errors of Measurement	3
1.3 Cali	bration	5
1.3.1	Definition of the Calibration	5
1.3.2	Importance of Calibration	5
1.4 Metrology Laboratories		5
1.5 Mea	surement Standard Units	6
1.6 Elec	trical Metrology	6
1.6.1 A	ccuracy and Uncertainty	7
1.6.2 P	recision, Accuracy and Error	7
1.6.3 T	olerance and Verification	9
1.7 Elec	trical Units Derivation	9
1.8 A.C	Voltage Measurements	10

1.8.1 Basic Concepts	10
1.8.2 Direct Measurement of A.C Voltages	11
1.8.3 Indirect Measurement of A.C Voltages	12
1.9 The Principle of A.C – D.C Transfer	13
1.9.1 A.C Voltage Measurement by Using Thermal Devices	13
1.9.2 A.C Current Measurement by Using Thermal Devices	14
1.10 Common Types of A.C-D.C Thermal Transfer Devices	15
1.10.1 Fluke RMS Sensor TVC	15
1.10.2 Single-Junction Vacuum Thermocouple Converter (SJVTC)	16
1.10.2.1 Output characteristics of Thermoelement	18
1.10.2.2 Sources of Error in Thermoelement	18
1.10.3 Multi-Junction Thermoelements	20
1.10.4 Micropotentiometers (µpots)	20
<u>Chapter (2)</u>	
Direct Methods for Accurate Measurements of	
AC Voltage and Current	
2	
	22
2.1 Alternating Voltage	22 23
2.1 Alternating Voltage 2.1.1 Sine Wave plus D.C Component	23
2.1 Alternating Voltage 2.1.1 Sine Wave plus D.C Component 2.1.2 Harmonically-Distorted Sine Wave	23 23
2.1 Alternating Voltage 2.1.1 Sine Wave plus D.C Component 2.1.2 Harmonically-Distorted Sine Wave 2.2 Alternating Current	23 23 25
2.1 Alternating Voltage 2.1.1 Sine Wave plus D.C Component 2.1.2 Harmonically-Distorted Sine Wave 2.2 Alternating Current 2.2.1 Average Value and Root Mean Square Value	23 23 25 25
 2.1 Alternating Voltage 2.1.1 Sine Wave plus D.C Component 2.1.2 Harmonically-Distorted Sine Wave 2.2 Alternating Current 2.2.1 Average Value and Root Mean Square Value 2.3 Generation of an Alternating E.M.F 2.4 Determination of Alternating Voltage and Current Amplitude 2.5 Direct Methods for A.C Voltage Measurement 	23 23 25 25 27 28
2.1 Alternating Voltage 2.1.1 Sine Wave plus D.C Component 2.1.2 Harmonically-Distorted Sine Wave 2.2 Alternating Current 2.2.1 Average Value and Root Mean Square Value 2.3 Generation of an Alternating E.M.F 2.4 Determination of Alternating Voltage and Current Amplitude 2.5 Direct Methods for A.C Voltage Measurement 2.5.1 Electrostatic Devices	23 23 25 25 27 28 29 29
 2.1 Alternating Voltage 2.1.1 Sine Wave plus D.C Component 2.1.2 Harmonically-Distorted Sine Wave 2.2 Alternating Current 2.2.1 Average Value and Root Mean Square Value 2.3 Generation of an Alternating E.M.F 2.4 Determination of Alternating Voltage and Current Amplitude 2.5 Direct Methods for A.C Voltage Measurement 	23 23 25 25 27 28 29 29 29
2.1 Alternating Voltage 2.1.1 Sine Wave plus D.C Component 2.1.2 Harmonically-Distorted Sine Wave 2.2 Alternating Current 2.2.1 Average Value and Root Mean Square Value 2.3 Generation of an Alternating E.M.F 2.4 Determination of Alternating Voltage and Current Amplitude 2.5 Direct Methods for A.C Voltage Measurement 2.5.1 Electrostatic Devices 2.5.1.1 Construction of The Electrostatic Device 2.5.1.2 Theory of Operation	23 23 25 25 27 28 29 29 29 30
2.1 Alternating Voltage 2.1.1 Sine Wave plus D.C Component 2.1.2 Harmonically-Distorted Sine Wave 2.2 Alternating Current 2.2.1 Average Value and Root Mean Square Value 2.3 Generation of an Alternating E.M.F 2.4 Determination of Alternating Voltage and Current Amplitude 2.5 Direct Methods for A.C Voltage Measurement 2.5.1 Electrostatic Devices 2.5.1.1 Construction of The Electrostatic Device	23 23 25 25 27 28 29 29 29

2.6 Experimental Study by Using DVM	34
2.6.1 Temperature Control	35
2.6.2 Humidity Control	36
2.6.3 Technical Description	36
2.6.4 HP-3458A Front Panel	39
2.6.5 Making a Measurement	40
2.6.6 AC Voltage and Current Accuracy	41
2.6.7 Experimental Results	41
2.6.7.1 Results of A.C Voltage	42
2.6.7.2 Results of A.C Current	45
Chapter (3)	
Indirect Methods for Accurate Measurements	
of A.C Voltage and Current	
3.1 Introduction	49
3.2 Electronic Devices	49
3.3 Thermal Devices	51
3.3.1 Theory	51
3.3.2 Types of the Thermal Devices	53
3.3.3 The Results by Using the Single Junction TVC	62
3.3.4 Using the Micro-pots	73
3.4 A.C Current Measurements	76
3.4.1 Using the Current Shunt	78
3.4.2 Practical Results	81

2.5.2.1 Construction of The Electrodynamic Device

2.5.3 High Sensitive Precision Digital Voltmeter (DVM)

2.5.2.2 The Advantages and The Disadvantages

2.5.3.1 DVM Block Diagram

30

31

31

33

Chapter (4) Uncertainty in Measurement of A.C Voltage and current

4.1 Intr	roduction	95
4.2 Gen	neral Rules	96
4.3 Sou	rces of Uncertainty in Measurement	96
4.4 Eva	luation of Standard Uncertainty	97
4.4.1 T	Type A Evaluation	98
4.4.2	Type B Evaluation	100
4.5 Con	nbined Standard Uncertainty	102
4.6 Exp	anded Uncertainty	104
4.7 Cov	4.7 Coverage Factor	
	nmarized Procedure for Evaluation and Expression of certainty	105
4.9 Res	ults Reporting	108
4.10 Un	certainty Evaluation in A.C Voltage Measurements	108
4.10.1	Ranges	108
4.10.2	Equipment Used	109
4.10.3	Type A Evaluation of the Uncertainty statement	109
4.10.4	Type B Evaluation of Uncertainty Statement by Using	110
4 10 5	DVM	
4.10.5	The Uncertainty Budget	111
4.10.6	Combined Standard Uncertainty	112
4.10.7	Expanded Uncertainty of the Final Value	112
4.10.8	Reporting the Final Result	113
4.10.9	Type B Evaluation Uncertainty Statement by Using TVC	113
	The Uncertainty Budget	115
	Combined Standard Uncertainty	116
	Expanded Uncertainty of the Final Value	116
4.10.13	Reporting the Final Result	116

	ncertainty Evaluation Due to Using DVM and TVC in	117
m	easuring A.C Current	
4.11.1	Ranges	117
4.11.2	Equipment Used	117
4.11.3	Type A Evaluation of Uncertainty Statement	117
4.11.4	Type B Evaluation of the Uncertainty statement by	118
	Using DVM	
4.11.5	Uncertainty Budget	118
4.11.6	Combined Standard Uncertainty	119
4.11.7	Expanded Uncertainty of the Final Value	119
4.11.8	Reporting the Final Result	119
4.11.9	Type B Evaluation of Uncertainty Statement by Using	119
	TCC	
4.11.10	Uncertainty Budget	119
4.11.11	Combined Standard Uncertainty	120
4.11.12	Expanded Uncertainty of the Final Value	120
4.11.13	Reporting the Final Result	121
	Chapter (5)	
Con	nparison Between the Most Accurate Meth	ods
5.1 Inti	roduction	122
5.2 Cor	nparison of the Accuracy Attitude	122
	For AC Voltage	122
	For A.C Current	125
J.4.4	FOI A.C CUITCH	123
5.3 Coi	nparison of the Uncertainty Attitude	127
	For A.C Voltage	127
	or A C Current	137

152
153
154
156
160
164
172
182

LIST OF FIGURES

- Fig. 1.1 The normal distribution curve
- Fig. 1.2 Difference between Precision and Accuracy
- Fig. 1.3 Electric quantities derivation according to SI units
- Fig. 1.4 A.C-D.C Voltage Transfer
- Fig. 1.5 A.C-D.C Current Transfer
- Fig. 1.6 RMS sensor circuit
- Fig. 1.7 Schematic of SJVTC
- Fig. 1.8 Micropotentiometer
- Fig. 2.1 sine wave with a d.c component
- Fig. 2.2 2nd Harmonic Distortion
- Fig. 2.3 3rd Harmonic Distortion
- Fig. 2.6 Average and r.m.s values
- Fig. 2.4 Instantaneous value of generated e.m.f
- Fig. 2.5 sine wave of e.m.f
- Fig. 2.7 Electrostatic device
- Fig. 2.8 Electrodynamic Instrument
- Fig. 2.9 HP 3458A Simplified Block Diagram
- Fig. 2.10Front Panel of the DVM
- Fig. 2.11Connection for A.c Voltage Measurement
- Fig. 2.12 200 mV at different frequencies
- Fig. 2.13 0.5V at different frequencies
- Fig. 2.14 10V at different frequencies
- Fig. 2.15 100V at different frequencies
- Fig. 2.16 500V at different frequencies
- Fig. 2.17 Holt-11 shunt resistance
- Fig. 2.18 5 mA at different frequencies
- Fig. 2.19 250 mA at different frequencies
- Fig. 2.20 1A at different frequencies
- Fig. 2.21 5A at different frequencies
- Fig. 2.22 10A at different frequencies
- Fig. 3.1 Meter Circuit
- Fig. 3.2 Vacuum Thermoelement
- Fig. 3.3a Voltage converter (TVC)
- Fig. 3.3b Photo of a single element thermal (SJVTC)
- Fig. 3.4 Schematic of SJVTC
- Fig. 3.5 Resistor elements for different voltage ranges
- Fig. 3.6 Frequency compensation shield
- Fig. 3.7a Thermal element and low voltage unit with resistor(R)
- Fig. 3.7b Cross-section of high voltage TVC
- Fig. 3.8 D.C Reversal Error