THE ROLE OF CONTRAST ENHANCED SPECTRAL MAMMOGRAPHY IN THE FOLLOWUP OF PATIENTS WHO HAD UNDERWENT BREAST SURGERY.

Thesis

Submitted for partial fulfillment of MSc. Degree in Radiodiagnosis

Presented by

Marwa Mohamed Taher Mohamed ElSayad

M.B.B.Ch, Faculty of Medicine-Cairo University

Supervised by

Prof. Dr. Rasha Mohamed Kamal

Prof. of Radiology

Faculty of Medicine - Cairo University

Dr. Ayda Aly Youssef

Lecturer of Radiology

National Cancer Institute - Cairo University

Faculty of Medicine
Cairo University
2015

Abstract

In this This study was prospectively carried on 38 female patients presenting with history of previous breast surgery on either breast sides, who require follow up. It included 38 post-operative patients with 52 breast lesions. Each lesion was assigned an independent BIRADS score for each modality. The results were studied and correlated.One of these is contrast-enhanced mammography (CESM) that improves the sensitivity for breast cancer detection without decreasing specificity as it provides higher contrast and better lesion delineation than mammography alone.CESM is an imaging technique combining digital mammography with intravenous injection of iodinated contrast media to detect hypervascularized lesions. Addition of iodinated contrast agent to Mammography facilitates the visualization of breast lesions.

Keywords: CESM-MRI- BIRADS- BRCA

First and foremost, thanks to Allah, the most beneficial and most merciful. It is but for His mercy that we can put through in life.

I am greatly indebted to **Prof. Dr. Rashaa Mohammed Kamal**, Professor of Radiology, Cairo University; for her great help, outstanding support and overwhelming kindness, and for her extreme patience, persistent guidance and understanding. She enlightened my path and guided my footsteps through many obstacles. I really owe her much.

I am also very grateful to **Dr. Ayda Aly Youssef** lecturer of Radiology, National Cancer Institute, Cairo University, for her meticulous supervision, sincere encouragement, valuable criticism, and kind guidance throughout the whole work.

I must extend my warmest gratitude to **Prof. Dr. Ashraf**Selim, head of Radiology Department, Cairo University, for
granting me the opportunity to work on this thesis and to all
professors and lecturers of the Department especially the Women
Imaging Unit, for their extended support and encouragement.

And last but certainly not least, My heartful thanks to my mother **Prof. Dr. Azza Khalil Amer** for all her encouragement, guidance, support and being a role model for me to follow and to the rest of my family members, for their assistance, encouragement, patience and support throughout my work.

Finally, many thanks are due to my friends and fellow colleagues in the Radiology Department. Their support and encouragement had certainly been overwhelming.

Table of Contents

	Page
List of Tables	I
List of Figures	II
List of Abbreviations	VI
Chapter1: Introduction and Aim of the Work	1
Chapter 2: Review of Literature	4
Chapter 2.1: Breast cancer overview	4
Chapter 2.2: Current trends in breast surgery	11
Chapter 2.3: Non-Contrast imaging of post-operative	22
breast	
Chapter 2.4: Contrast imaging of post-operative breast	41
Chapter 3: Patients and Methods	71
Chapter 4 : Results	76
Chapter 5: Case presentation	93
Chapter 6: Discussion	120
Chapter 7: Summary and Conclusion	133
References	136
Arabic Summary	158

List Of Tables

Results		page
Table 4.1	Age distribution of the patients participating in	77
	the study.	
Table 4.2	Distribution of benign and malignant groups	78
	within the studied population according to the site	
	of their suspected lesions.	
Table 4.3	Distribution of benign and malignant groups	79
	within the studied population according to	
	pathology and close follow up examination results.	
Table 4.4	Mammography findings among studied lesions.	80
Table 4.5	Ultrasound findings among studied lesions.	82
Table 4.6	Benign and malignant sono-mammography	83
	results for the studied population.	
Table 4.7	TP,TN,FP and FN results of sono-mammography.	84
Table 4.8	Benign and malignant CESM results for the	88
	studied population.	
Table 4.9	TP, TN,FN and FP results of CESM.	89
Table 4.10	TP, TN, FN and FP results of Sono-	91
	mammography combined with CESM.	

List Of Figures

No of Fig	Title	Page
Chapter 2:Review of literature		
Ch	napter 2.3: Non-contrast imaging of post-operative breast	
Fig 2.3.1	Fat necrosis elicited by mammography	28
Fig 2.3.2	Edema and diffusely increased breast density elicited by	29
	mammography.	
Fig 2.3.3	Breast skin thickening elicited by mammography	30
Fig 2.3.4	Surgical scar right breast elicited by mammography	32
Fig 2.3.5	Breast architectural distortion elicited by	33
	mammography	
Fig 2.3.6	Breast micro-calcifications elicited by mammography	35
Fig 2.3.7	Breast macro-calcification elicited by mammography	35
Fig 2.3.8	Skin thickening elicited by breast ultrasound	37
Fig 2.3.9	Breast seroma elicited by ultrasound	38
Fig 2.3.10	Breast fat necrosis elicited by ultrasound	39
Fig 2.3.11	Breast tumor recurrence elicited by ultrasound	40
(Chapter 2.4: Contrast Imaging of Post-operative Breast	
Fig 2.4.1	DCE-MRI patterns of enhancement curves	46
Fig 2.4.2	Architectural distortion elicited by breast MRI	48
Fig 2.4.3	Hematoma elicited by breast MRI	49
Fig 2.4.4	Seroma elicited by breast MRI	51
Fig 2.4.5	Fat necrosis elicited by breast MRI	53
Fig 2. 4.6	Seroma cavity with nodular enhancement measuring	54
	greater than 5 mm elicited by breast MRI	
Fig 2.4.7	Segmental clumped heterogeneous NMLE at the	55
	lumpectomy site elicited by breast MRI	
Fig 2.4.8	Linear clumped heterogeneous NMLE at the	56

	lumpectomy site elicited by breast MRI	
Fig 2.4.9	Focal clumped heterogeneous NMLE at the lumpectomy	56
	site elicited by breast MRI	
Fig 2.4.10	Regional clumped heterogeneous NMLE at the	57
	lumpectomy site elicited by breast MRI	
Fig 2.4.11	Multifocal recurrence elicited by breast MRI	59
Fig 2.4.12	Demonstration for dual energy CESM	67
	Chapter 4:Results	
Fig 4.1	Types of breast surgery in studied group.	76
Fig 4.2	Classification of suspected lesions.	78
Fig 4.3	Distribution of benign and malignant groups within the	79
	studied population according to the site of their	
	suspected lesions.	
Fig. 4.4	Distribution of benign and malignant groups within the	80
	studied lesions.	
Fig 4.5	Mammographic findings among studied lesions.	81
Fig 4.6	Ultrasound findings among studied lesions.	83
Fig 4.7	Benign and malignant sono-mammography results for	84
	the studied population.	
Fig 4.8	Post-test probability curve for sono-mammography.	85
Fig 4.9	Lesions contrast uptake in CESM in studied group.	86
Fig 4.10	Patterns of contrast uptake by lesions in studied group.	87
Fig 4.11	Distribution of benign and malignant diagnosis among	88
	enhancing and non-enhancing lesions.	
Fig 4.12	CESM results among studied population.	89
Fig 4.13	Post-test probability curve for CESM.	90
Fig 4.14	Post-test probability curve for sono-mammography	92

	combined with CESM.	
	Chapter 5: Case presentation	
Fig 5.1.a	Mammography CC view	93
Fig 5.1.b	Mammography MLO view	93
Fig 5.1.c	Breast ultrasound	94
Fig 5.1.d	Breast ultrasound	94
Fig 5.1.e	CESM CC view	95
Fig 5.1.f	CESM MLO view	95
Fig 5.2.a	Magnification of lesion	96
Fig 5.2.b	Mammography CC view	96
Fig 5.2.c	Breast ultrasound	97
Fig 5.2.d	Breast ultrasound	97
Fig 5.2.e	CESM MLO view	98
Fig 5.2.f	CESM CC view	98
Fig5.3.a	Mammography CC view	99
Fig5.3.b	Mammography MLO view	99
Fig5.3.c	CESM CC view	100
Fig5.3.d	CESM MLO view	100
Fig 5.4.a	Mammography CC view	101
Fig5.4.b	Mammography CC view	101
Fig5.4.c	Breast Ultrasound	102
Fig 5.4.d	Breast Ultrasound	102
Fig 5.4.e	CESM CC view	103
Fig5.4.f	CESM CC view	103
Fig5.5.a	Mammography MLO view	104
Fig 5.5.b	Mammography MLO view	104
Fig5.5.c	Breast ultrasound	105
Fig5.5.d	Breast Ultrasound	105

Fig5.5.e	CESM MLO view	106
Fig5.5.f	CESM MLO view	106
Fig5.6.a	Mammography MLO view	107
Fig5.6.b	Mammography MLO view	107
Fig5.6.c	Breast ultrasound	108
Fig5.6.d	Breast ultrasound	108
Fig5.6.e	CESM MLO view	109
Fig5.6.f	CESM CC view	109
Fig5.7.a	Mammography MLO view	110
Fig5.7.b	Mammography CC view	110
Fig 5.7.c	Breast ultrasound	111
Fig 5.7.d	Breast ultrasound	111
Fig5.7.e	CESM MLO view	112
Fig5.7.f	CESM CC view	112
Fig5.8.a	Mammography MLO view	113
Fig5.8.b	Mammography MLO view	113
Fig 5.8.c	CESM MLO view	114
Fig 5.8.d	CESM MLO view	114
Fig 5.9.a	Mammography MLO view	115
Fig 5.9.b	Mammography CC view	115
Fig5.9.c	Breast ultrasound	116
Fig5.9.d	Breast ultrasound	116
Fig 5.9.e	CESM CC view	117
Fig 5.9.f	CESM MLO view	117
Fig 5.10.a	Mammography MLO view	118
Fig 5.10.b	Mammography CC view	118
Fig 5.10.c	CESM MLO view	119
Fig 5.10.d	CESM CC view	119

List of abbreviations

>	ACR: American College of Radiology
>	ACRIN: American College of Radiology Imaging Network
>	AGO: Arbeitgeinschaft Gynakologische Oncologie
>	AJCC: American Joint Cancer Committee
>	Al: aluminum
>	BIRADS: breast imaging reporting and database system
>	BCT: breast conservative therapy
>	BRCA: breast cancer
>	CC: cranio-caudal
>	CEDM: contrast enhanced digital mammography
>	CESM: contrast enhanced spectral mammography
>	CT: computed tomography
>	Cu: copper
>	DCE-MRI: dynamic contrast enhanced magnetic resonance
imagi	ng
>	DCIS: ductal carcinoma in situ
>	DE: dual energy
>	ER: estrogen receptor
>	ESMO: American Society of Oncology
>	FNAC: fine needle aspiration cytology
>	FSPGR: fast spoiled gradient-recalled acquisition
>	G: grade
>	Gd: gadolinium
>	GE: General Electric
>	HER2: human epidermal growth factor receptor 2

>	IBR: immediate breast reconstruction
>	IDC: invasive ductal carcinoma
>	ILC: invasive lobular carcinoma
>	keV: kilo electron volt
>	kV: kilo volt
>	LCIS: lobular carcinoma in situ
>	LR: local recurrence
>	M: distant metastasis
>	MG: mammography
>	MIP: maximum intensity projections
>	MLO: medio-lateral oblique
>	Mo: molybdenum
>	MRI: magnetic resonance imaging
>	MRM: modified radical mastectomy
>	N: regional lymph node
>	NAC: nipple-areola complex
>	NMLE: non mass like enhancement
>	NSM: nipple sparing mastectomy
>	PR: progesterone receptor
>	Rh: rhodium
>	ROLL: radio occult lesion localization
>	RT(PCR): reverse transcription polymerase chain reaction
>	SI: signal intensity
>	SLN: sentinel lymph node
>	sn: sentinel node
>	SSM: skin sparing mastectomy

>	STIR: short tau inversion recovery
>	T: primary tumor
>	T1 mic: micro-invasion
>	Tis: Carcinoma in situ
>	TRAM: transverse rectus abdominus muscle
>	US: ultrasound
>	WI: weighted image
>	WL: wire localization

Introduction

The introduction of full-field digital mammography has sparked the development of other techniques that are less expensive than magnetic resonance imaging (MRI) and more widely available. One of these is contrast-enhanced spectral mammography (CESM) that improves the sensitivity for breast cancer detection without decreasing specificity as it provides higher contrast and better lesion delineation than mammography (MG) alone (*Dromain et al.*, 2012).

Preliminary results with CESM examination suggest that, similar to breast MRI, CESM should be of particular interest for the assessment of the extent of disease that allow a better evaluation of lesion size and detection of more multifocal breast cancers than mammography alone or combined with ultrasonography (US) (Fallenberg et al., 2014).

Many factors influence the individual woman's requirements for follow-up care after breast surgery. Recommendations to individuals should be based on the absolute benefits and potential risks of follow-up care, and the individual's needs. These factors should be discussed with the woman. With the current treatment protocols the local recurrence rate is 1% - 2% per annum after breast conserving treatment and radiotherapy and 1% after mastectomy (*Ewan 2001*).

The usual treatments for local recurrence are more effective if used in the earliest phases. Local recurrences are more commonly diagnosed during routine follow-up at a time when the patient is asymptomatic. The percentage of patients with a recurrence being asymptomatic at time of detection varied between 9% (Donnelly et al., 2001) and 52% (Perrone et al., 2004).

New contralateral primaries are usually diagnosed as part of the regular mammographic screening while patients are asymptomatic. The outcomes are based on tumor characteristics and are independent of the original cancer (*Rutherford et al., 2010*).

As CESM seems to be a promising tool for increasing the sensitivity of MG, with a performance comparable to that of MRI, it might be expected to improve size estimation and staging. Investigational clinical results on CESM have been published during the last few years, suggesting that the technique may be a useful adjunct to MG with lesion contrast uptake information (*Dromain et al.*, 2006).

Also, CESM could be useful in follow-up of cases after surgery and monitoring lesion size after chemotherapy (*Elsaid and Raafat 2012*).

Therefore, CESM as an adjunct to MG with or without US is expected to improve diagnostic accuracy compared to MG with or without US. Addition of iodinated contrast agent to MG facilitates the visualization of breast lesions (*Dromain et al., 2012*).

To our knowledge, there is a paucity in literature in this field and such an approach has not yet been attempted in clinical application. Thus, we will discuss the application of CESM in the follow up of patients who had undergone breast surgery in reference to the literature describing the MRI features in the field. Enhancing breast mass

INTRODUCTION

lesions were therefore assessed in reference to American College of Radiology (ACR) 2013 Breast Imaging Reporting and Data Base System (BIRADS) MRI Lexicon as no standardized BIRADS Lexicon to CESM is still established (*Morris et al., 2013*).

Aim of the work

The aim of this work is to evaluate the diagnostic accuracy of Contrast Enhanced Spectral Mammography as an adjunct to sono-mammography versus sono-mammography alone in the assessment of patients following breast surgery.