Impact of C- reactive protein and Body Mass Index on patient Outcome in respiratory ICU in Abbasia Chest Hospital

Thesis

Submitted for partial fulfillment of the Master Degree in Chest Diseases and Tuberculosis

Presented by

Hossam Saad Mohamed M.B.B.CH Supervised by

Prof. Taher Abd El Hamid El Naggar

Professor of Pulmonary Medicine
Faculty of Medicine
Ain shams University

Dr. Khaled Mohamed Wagih

Assistant Professor of Pulmonary Medicine Faculty of Medicine Ain shams University

> Faculty of medicine Ain shams university 2012

Acknowledgment

In the name of Allah, most gracious, most merciful.

First of all I would like to thank Allah who enabled me to finish this research.

I am deeply indebted to my supervisor Professor; Taher Abd El Hamid El naggar Professor of Chest diseases, Ain Shams University whose guidance and instructions were invaluable.

I would like to express my gratitude to Doctor Khaled Mohamed Wagih assistant professor of Chest Diseases, Ain Shams University for his help & patience all through the time of the research.

I forward my appreciation to all the staff of Abassia Chest Hospital; doctors and nurses for their tremendous efforts to help me to finish this research.

List of Contents

<u>Title</u>	<u>Pages</u>
Acknowledgement	2
List of contents	3
List of tables	4
List of figures	6
Abbreviations	7
Introduction	10
Aim of the work	13
Review of literature	14
C - reactive protein	14
Obesity	28
Materials and methods	74
Results	79
Discussion	99
Summary and conclusion	109
Recommendations	111
References	112
Appendix	138
Arabic summary	_

List of Tables

Table No.	<u>Title</u>	Pages
1	Personal characteristics	79
2	Anthropometric measurements	79
3	CRP results of study cases	81
4	Need for MV, duration of MV, LOS	81
5	Final outcome among study cases	81
6	Relation between CRP and smoking	84
7	Relation between CRP and MV	85
8	Relation between CRP and outcome	85
9	Relation between CRP and LOS	86
10	Relation between CRP and duration of MV	88
11	Relation between sex, smoking, BMI, MV, in patients with normal and elevated	89
	CRP	
12	Description of age, lab invest, duration of	90
	MV, LOS in underweight group	
13	Description of age, lab invest, duration of	91
	MV, LOS in normal group	
14	Description of age, lab invest, duration of	91
	MV, LOS in overweight group	

15	Description of age, lab invest, duration of	92
	MV, LOS in obese group	
16	Description of age, lab invest, duration of	92
	MV, LOS in morbid obese group	
17	Relation between sex, smoking, CRP,	93
	MV, outcome in different BMI groups	
18	Comparison between BMI groups as	94
	regard age, CRP, duration of MV, LOS	
19	Comparison between died and lived as	95
	regard LOS, duration of MV	
20	Comparison between died and lived as	95
	regard complications	
21	Comparison between died and lived as	96
	regard diagnosis	
22	Comparison between nosocomial	96
	infection as regard LOS, duration of MV	

List of Figures

Fig. No.	<u>Title</u>	Pages
1	Distribution according to sex	80
2	Distribution according to smoking	80
3	Distribution according to BMI groups	82
4	Distribution according to CRP level	82
5	Distribution according to need for mechanical ventilation	83
6	Distribution according to outcome	83
7	Relation between CRP and outcome	87
8	Relation between CRP and duration of MV	87
9	Distribution of outcome in different BMI	97
10	Relation_between nosocomial infection and LOS, duration of MV	98

List of Abbreviations

6MWD 6 minute walk distance

ACTH Adreno-corticotrophic hormone

AgRP Agouti related peptide

APPs Acute phase proteins

APR Acute phase reactants

ARDS Acute respiratory distress

syndrome

BMI body mass index

C1q complement component

CAP Community acquired pneumonia

CBC Complete blood count

ChoP choline phosphate

COPD Chronic obstructive pulmonary

disease

CPAP Continous positive airway

pressure

CRP c- reactive protien

Da Dalton

DM Diabetes mellitus

DPPC dipalmitoyl phosphatidylcholine

DVT Deep venous thrombosis

DXA Dual energy x ray absorptiometry

ESR Erythrocyte sedimentation rate

ERV Expiratory reserve volume

FEV₁ Forced expiratory volume in one

second

FRC Functional residual capacity

FVC Forced vital capacity

GERD Gastro esophageal reflux disease

HIV Human immunodeficiency virus

HS Highly significant

IL-1 Interleukin 1

IL-11 Interleukin 11

IL-6 Interleukin 6

IL-8 Interleukin 8

LL-37 The Human Antimicrobial

Peptide LL-

LH Lateral hypothalamus

LOS Length of hospital stay

MV Mechanical ventilation

MVV Maximal ventilatory volume

NIV Non invasive ventilation

NPY Neuro peptide Y

NS Non significant

OHS Obesity hypoventilation

syndrome

OSA Obstructive sleep apnea

OSAHS Obstructive sleep apnea

hypopnea syndrome

PaCO₂ partial pressure of carbon dioxide

in the arterial blood

PaO₂ Partial Pressure of Oxygen in

Arterial Blood

PAF Platelet activating factor

PEEP Positive end expiratory pressure

POMC Pro-opio melanocortin

P-value Level of significance

RICU Respiratory intensive care unit

rPAF receptor for platelet-activating

factor

RV Residual volume

S Significant

SD Standard deviation

TNF tumour necrosis factor

TLC Total lung capacity

VAP Ventilator associated pneumonia

VC Vital capacity

VMH Ventromedial hypothalamus

Vd Volume of distribution

WHO World health organisation

Introduction

Critically ill patients are responsible for 10-25% global hospital costs. (*Barrera et al, 2001*)

A number of inflammatory cells and mediators involved in the inflammatory response have been assessed for their role as potential markers of the presence and severity of the inflammatory response and organ failure. (*Pinsky et al, 1993*)

Serum CRP level began to be used as a diagnostic tool useful in determining the degree of activity, and as a therapeutic guide of a number of conditions that commonly lead to substantial changes in the plasma concentrations of acute phase proteins. (*Pepys and Hirschfield*, 2003)

Plasma CRP is an acute phase-protein synthesized only by the liver largely under transcriptional control of IL-6, CRP levels rise rapidly in response to several inflammatory stimuli, bacterial infection being one of the most potent. The secretion of CRP begins within 4–6 hours of the stimulus, doubling every 8 hours, and peaking at 36–50 hours. After the disappearance of or removal of the stimulus, the CRP concentration decreases rapidly with a half-life of 19 hrs (*Povoa*, *2002*)

When the stimulus for increased production completely ceases, the circulating CRP concentration falls rapidly, at almost the rate of plasma CRP clearance. These characteristics of quick rise and decrease make this parameter an interesting one in the evaluation of response to therapy and prediction of outcome. (*Lauritzen et al.*, 2003)

As obesity is such a pervasive disorder in our society, and because obesity is an important risk factor for many diseases, it is not surprising that many obese patients are treated in the ICU. (Marik et al, 1998)

Obesity has been associated with an increased risk for diabetes, cardiovascular and pulmonary diseases and an increased risk of death associated with these disorders. Additionally, obese patients have more frequent hospitalizations because obesity is associated with the progression of many underlying disorders. (*Peake et al*, 2006)

Problems in obese patients in the intensive care unit (ICU) may include difficulties with airway maintenance, disordered ventilation and gas exchange, impaired circulation and altered drug pharmacokinetics. Procedures are more challenging, whether non-operative (e.g. airway intubation, vascular access, neural

blocks, urinary catheterization) or operative. Safe transport, repositioning, image acquisition and mobilization can be major challenges requiring careful planning and execution. (*Terris et al*, 1996)

Although body weight that exceeds ideal standards as determined by age, sex, and height may be accounted for by a greater muscle mass or bone mass, most individuals who weigh >20% over their calculated ideal body weight have excessive adipose mass. Body mass index (BMI) has become a widely used tool for identifying overweight and obese individuals. (marik et al, 1998)

Aim of the Work

The aim of our study is to evaluate the impact of C - reactive protein and body mass index on patient outcome admitted in respiratory intensive care unit (RICU) in Abbasia chest hospital.

C - reactive protein

Definition:

Human serum CRP is a cyclic pentameric protein of five identical non-glycosylated subunits of 206 amino acids, each with a molecular mass of 24 kDa, that are non-covalently bound to form the mature CRP molecule. (*Gewurz et al.*,1995)

An acute phase protein has been defined as one whose plasma concentration increases (positive acute phase proteins) or decreases (negative acute phase proteins) by at least 25 percent during inflammatory disorders. (*Morley and Kushner*, 1982)

Biosynthesis and Regulation:

Serum CRP is synthesized by hepatocytes in the liver as a singlechain precursor with a cleavable signal sequence at the N terminus. (*Tucci et al.*, 1983)

In addition to synthesis by hepatocytes to generate serum CRP, this protein is also expressed on the epithelial surface of the human respiratory tract. (*Gould and Weiser*, 2001)

CRP was initially thought to be produced and secreted only by hepatocytes under induction primarily by interleukin-6 (IL-6), with a synergistic effect of IL-1. (*Weinhold and Ruther*, 1997)

Tumour necrosis factor alpha, transforming growth factor b, and IL-11 have also been shown to affect hepatic CRP expression. (*Baumann and Schendel*, 1991)

There is also evidence of CRP expression by Kupffer cells and peripheral blood mononuclear cells, where it was shown to be a membrane protein that is not secreted. (*Kuta and Baum*, 1986)

CRP is one of the acute phase proteins, the serum or plasma levels of which rise during general, non specific response to a wide variety of diseases. These include infections by gram positive and gram negative organisms, acute phase of rheumatoid arthritis, Pneumonia, and inflammation of the bile duct. CRP levels rise in serum or plasma within 24 to 48 hours following acute tissue damage, reach a peak during the acute stage and decrease with the resolution of inflammation or trauma. (*Kushner*, 1991)

The increase of CRP concentration in human serum or plasma may last for several days before decreasing to normal levels. (*Dixon*, 1984)

CRP levels rise rapidly in response to several inflammatory stimuli, bacterial infection being one of the most potent. The secretion of CRP begins within 4–6 hours of the stimulus, doubling every 8 hours, and peaking at 36–50 hours. After the