

Role of cardiac MRI in the assessment of heart, liver, and pancreatic iron deposition among Egyptian transfusion dependent sickle cell disease

Thesis Submitted for partial fulfillment of Doctorate Degree in Radiology

Presented by Basant Mohamed Raief Mosaad

M.B., B. Ch., M.Sc. Faculty of Medicine - Ain Shams University

Supervised by

Prof. Dr. Khalid Esmat Allam

Professor of Radiology Faculty of Medicine - Ain Shams University

Prof. Dr. Mohsen Saleh ElAlfy

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Prof. Dr. Ahmed Samir Abdel Hakim Ibrahim

Professor of Radiology Faculty of Medicine - Ain Shams University

Dr. Omar Farouk Kamel

Lecturer of Radiology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2018

وقل اعْمَلُوا فَسَيَرَى اللهِ عَمَلُوا فَسَيَرَى اللهِ عَمَلُوا فَسَيَرَى اللهِ عَمَلُوا فَسَيَرَى اللهِ عَمَلُكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونِ

First and foremost, my deep gratefulness and indebtedness is to Allah, the Most Gracious and the Most Merciful.

I would like to express my deepest appreciation and respect to **Prof. Dr. Khalid Esmat Allam**, Professor of Radiodiagnosis, Faculty of Medicine-Ain Shams University, for his priceless effort, generous guidance, and patience.

My most sincere gratitude is extended to **Prof. Dr. Ahmed**Samir Ibrahim, Professor of Radiodiagnosis, Faculty of MedicineAin Shams University, for his enthusiastic help, continuous
supervision, guidance, and support throughout this work.

I would like to express my thanks and appreciation to **Prof. Dr. Mohsen Saleh ElAlfy**, Professor of Paediatrics, Faculty of Medicine – Ain Shams University, for his supervision and guidance.

Also, I would like to express my thanks and appreciation to **Dr. Fatma Soliman Ebeid,** Assistant Professor of Paediatrics, Faculty of Medicine – Ain Shams University, for her constructive criticism, help and valuable comments.

I am grateful to **Dr. Omar Farouk Kamel**, Lecturer of Radiodiagnosis, Faculty of medicine-Ain Shams University for his great help and support throughout this work.

I would like to thank MRI technician Ahmed Elsayed Abdalaziz Hashem for his powerful, efficient, and influential assistance.

Lastly and not least, I send my deepest love to my family and my friends for their love and care.

Eist of Contents

Title Page
TitlePageList of Abbreviationsi
List of Figuresiii
List of Tablesvii
Introduction1
Aim of the Work5
Review of the literature:
♣ Radiological Anatomy of the heart, Liver, and pancreas 6
♣ Pathophysiology of Sickle cell disease20
4 Clinical Manifestations and Complications of Sickle
cell disease27
4 Technical aspects of Cardiac, hepatic, and Pancreatic
MRI47
Patients and methods60
Results
Illustrative cases
Discussion
Summary and Conclusion
References
Arabic Summary

Eist of Abbreviations

/s	Per second
ACS	Acute chest syndrome
AVN	Avascular necrosis
CMR	Cardiovascular magnetic resonance
Ct	Crista terminalis
CT	Computed tomography
CVA	Cerebrovascular accidents
DMT-1	Divalent Metal Transporter
Fe2+	Ferrous
fo	Oval fossa
GRE	Gradient echo
Hb	Haemoglobin
Hb S	Sickle haemoglobin
Hb S/β0 thalassaemia	Hb S-beta thalassemia
or Hb S/β+	
thalassaemia Hb SC	Sickle-haemoglobin C disease
HIC	Hepatic iron content
HRCT	High resolution CT scan
LA	Left atrium
LIC	Liver iron concentration
LPI	Labile plasma iron
LV	Left ventricle
MR	Magnetic resonance
MRI	Magnetic resonance imaging
ms	milliseconds
NTBI	Non-transferrin bound iron
1,122	Tion demonstration ording from

PH	Pulmonary hypertension
pRBCs	Packed red blood cells
RA	Right atrium
raap	Right atrial appendage
RBCs	Red blood cells
RES	Reticuloendothelial system
RF	Radiofrequency pulse
ROI	Region of interest
SE	Spin echo
SF	Serum ferritin
SI	Signal intensity
SIR	Signal intensity ratio
SPGR	Spoiled gradient echo
TE	Echo Time
TR	Repetition Time

Eist of Figures

Figure	Title	Page
Radiological anatomy of the heart, liver, and pancrea		
1	(a), (b) & (c) MRI black blood images showing	6
	cardiac position in thorax.	
2	Anterior surface of the heart.	7
3	Diaphragmatic surface and the base of the heart.	8
4	Cardiac MRI showing right atrium with Crista	9
	Terminalis.	
5	Cardiac MRI showing right atrial appendage.	9
6	Cardiac MRI showing left atrium.	10
7	Cardiac MRI shows interatrial septum & oval fossa.	10
8	Essential characteristics of the morphologically right	11
	and left ventricle.	4.5
9	Schematic shows orientation of major cardiac planes	12
	with respect to heart and their corresponding	
10	appearance on bright blood sequences.	13
11	MR image of the LV in a 2-chamber long-axis view.	14
12	MR image of the LV in a 4-chamber long-axis view.	15
13	MR images of the LV in a short-axis view.	17
14	Diagram showing liver segments. MRI T1-weighted axial hepatic venous (a) and	17
17	hepatic arterial dominant (b - e) phase demonstrate the	17
	segments of liver.	
15	Axial T1-weighted image at pancreatic level.	18
16	Axial T1-weighted image at pancreatic level.	19
17	Axial T1-weighted image at pancreatic level.	19
	Pathophysiology of sickle cell disease	
18	Diagram showing indications and complications of	23
	transfusion.	
19	Iron absorption and transport.	25
Clinical manifestations and complications of sickle cell dis		isease
20	MRI axial T1 with (A) and without (B) contrast	26
	showing moyamoya.	
21	(A): Coronal US shows enlargement and	29 &
	heterogeneous echogenicity of the spleen (*).	30
	(B): Axial CT of the same patient confirm an enlarged	
	spleen that enhances heterogeneously(arrows).	

Figure	Title	Page	
22	(A): Axial US of the gallbladder shows an echogenic stone. (B)Gallbladder sludge.	31	
23	T2-weighted MRI image shows low signal within the renal cortex (arrowheads).	32	
24	(A and B): Axial fat-saturated fast spin-echo (SE) T2-weighted MR image shows the significant hypo intense signal of the liver and spleen, sparing the kidneys and pancreas, supporting diagnosis of secondary hemochromatosis	32	
25	CT scan shows right renal cortical infarct (arrow).	33	
26	(A and B) HRCT scan showing bilateral multiple infiltrates of ACS as well as bilateral pleural effusion.	37	
27	(A and B) HRCT scan showing right upper lobar anterior segment cystic bronchiectatic changes.	37	
28	(A) PA radiograph shows widening of the medullary cavity with thinning of the inner and outer tables (arrows). (B) Lateral radiograph shows vertical hair-on-end striations in the occipital region.	38	
29	Lateral X ray of dorsal spine showing H shaped vertebrae.	39	
30	T2-weighted coronal (a) and sagittal (b) MR images of the thoracolumbar spine showing extramedullary haematopoiesis.	40	
31	(a) and (b) Osteonecrosis of the femoral head.	41	
32	(a) AP radiograph shows stage IV avascular necrosis, (b) and (c) Coronal T2- weighted short inversion time inversion recovery MR images show stage IV avascular necrosis.	42	
33	(a), (b) and (c) T1W sagittal, T2W sagittal, and coronal MRI knee in showing femoral and tibial medullary infarcts.	43	
34	Coronal T2-weighted inversion-recovery MR image showing chronic osteomyelitis with multiple abscesses.	44	
35	(a), (b) and (c) T2W sagittal, T1W axial and sagittal post gadolinium images showing discitis.	45	
36	(a, b) Axial T2-weighted inversion recovery MR images showing left hip septic arthritis.	46	
Tech	Technical aspects of hepatic, cardiac and pancreatic MRI		
37	Transverse (T2 and T2*) relaxation processes	48	

Figure	Title	Page
<u> </u>		,
38	(a) Axial Liver MRI (CMR Tools). (b) Black blood short axis cardiac MRI (CMR Tools).	50
39	Liver iron assessment by local Excel Sheet method.	55
40	Cardiac iron assessment by local Excel Sheet method.	56
	Results	
41	Localizer images in three orthogonal planes.	62
42	Left Anterior oblique (LAO) vertical long axis.	62
43	4 chamber view (P4CH).	63
44	Box plot showing liver iron (at baseline & on follow	68
	up).	
45	Severity of hepatic iron deposition	69
46	Box plot showing cardiac T2*(at baseline & on follow	70
	up).	
47	Box plot showing pancreatic R2* (at baseline & on	71
	follow up).	
48	Severity of Pancreatic iron deposition	72
49	Scatter plot matrix showing the correlations among	75
	liver iron (LIC), cardiac T2* and pancreatic R2*	
50	measurements at baseline.	75
30	Scatter plot matrix showing correlation between baseline serum ferritin and liver iron as measured by	15
	CMR Thalassemia Tools.	
51	Scatter plot matrix showing correlation between	76
	baseline serum ferritin and liver iron as measured by	
	Excel sheet.	
52	Scatter plot matrix showing correlation between	76
	baseline liver iron as measured by CMR Thalassemia	
	Tools and Excel sheet.	
53	Scatter plot matrix showing the correlations among	78
	liver iron(LIC), cardiac T2* and pancreatic R2*	
5.4	measurements on follow up.	70
54	Scatter plot matrix showing correlation between liver	79
	iron as measured by CMR Thalassemia Tools and Excel sheet on follow up.	
	Cases	
		00.0
55	Case 1 (baseline): (a) Left ventricular short axis black blood sequence using multiple echo times (TEs). Axial	82 & 84
	MRI liver using multiple TEs with a ROI drawn in the	04
	periphery of the right lobe of liver (b) and in head of	
	pancreas (c).	

Figure	Title	Page
56	Case 1 (follow up): (a) Left ventricular short axis white blood sequence using multiple echo times (TEs). Axial MRI liver using multiple TEs with a ROI drawn in the periphery of the right lobe of liver (b) and in head of pancreas (c).	86 & 88
57	Case 2: (a) Left ventricular short axis black blood sequence using multiple echo times (TEs). Axial MRI liver using multiple TEs with a ROI drawn in the periphery of the right lobe of liver (b) and in head of pancreas (c).	94 & 96
58	Case 3: (a) Left ventricular short axis white blood sequence using multiple echo times (TEs). (b)Axial MRI liver using multiple TEs with a ROI drawn in the periphery of the right lobe of liver and in head of pancreas.	102
59	Case 4: (a) Left ventricular short axis black blood sequence using multiple echo times (TEs). Axial MRI liver using multiple TEs with a ROI drawn in the periphery of the right lobe of liver (b) and in head of pancreas (c).	109 & 111
60	Case 5: (a) Left ventricular short axis black blood sequence using multiple echo times (TEs). Axial MRI liver using multiple TEs with a ROI drawn in the periphery of the right lobe of liver (b) and in head of pancreas (c).	117 & 119

Rist of Tables

Table	Title	Page
1	Severity of iron overload in liver according to LIC	69
2	Severity of pancreatic iron overload (R2*).	72
3	Correlations matrix showing the correlation among liver iron (LIC), cardiac T2* and pancreatic R2* measurements at baseline.	73
4	Correlations among liver iron, cardiac T2* and pancreatic R2* measurements on follow up.	77

Abstract

20% of sickle cell disease (SCD) patients, receive chronic transfusion therapy to prevent further vascular sequelae. This transfusional iron leads to iron deposition in the spleen, liver, and bone marrow. In advanced cases iron also accumulates in parenchymal cells of the liver, heart, pancreas, and endocrine organs. serum ferritin was clinically used to estimate body iron stores; however, its measurement can be confounded by abnormal liver function inflammation. and ascorbate deficiency. Magnetic resonance imaging (MRI) has the ability of being non-invasive, inexpensive, reproducible with no exposure to radiation, is used to assess iron overload in different organs including liver, heart, and pancreas.

In our study, cardiac, hepatic, and pancreatic iron load among Egyptian sickle cell disease patients was assessed using MRI T2* relaxometry method, correlating pancreatic iron load to cardiac, hepatic iron load and to laboratory tests including serum ferritin. It enrolled 65 patients (32 females and 35 males) with median age group 14 years.

In conclusion, we found that MRI is essential for monitoring the overall iron balance in the body as well as for detection of extrahepatic iron deposition. No correlation between liver, heart, and pancreatic MRI T2* indicate that we can't rely only on liver MRI T2* to predict the exact overall condition of sickle cell patients in Egyptian population.

Keywords: MRI T2 *, Sickle cell disease, Ferritin, Iron load.

Introduction

Approximately 20% of sickle cell disease (SCD) patients, such as those with prior neurovascular events or abnormal transcranial doppler examinations, receive chronic transfusion therapy to prevent further vascular sequelae. However, routine transfusion therapy causes these patients to receive roughly 0.4 mg/kg/day of heme iron, which is over 25 times the physiological rate of iron absorption (*Brewer et al., 2009*). This leads to iron accumulation and damage in the liver, heart, and endocrine organs (*Carpenter et al., 2011*).

The human body has no mechanism for excreting excess iron, which is stored as crystalline iron oxide within ferritin and hemosiderin in the body. Transfusional iron leads to iron deposition in the reticulo-endothelial system of the spleen, liver, and bone marrow. In advanced cases iron also accumulates in parenchymal cells of the liver, heart, pancreas, and endocrine organs, which are sensitive to the toxic effects of iron. When the iron-binding capacity of transferrin is exhausted, free iron appears as non-transferrin bound iron (NTBI). The toxicity of NTBI is much higher than bound iron, and promotes hydroxyl radical formation resulting in peroxidative damage to membrane lipids and proteins. In the heart this results in impaired function of the mitochondrial respiratory chain and is manifested clinically as heart failure (*Anderson et al.*, 2001).

The clinical manifestations of myocardial siderosis often occur late and once heart failure develops; the outcome is usually poor despite intensive chelation. This iron-induced cardiomyopathy, however can be reversed if intensive chelation is instituted at an early stage. Myocardial iron measurement can therefore play an important role in

assessing the prevalence of myocardial siderosis, predicting the risk of cardiac complications and the tailoring of cardiac optimized iron-chelating treatment (He, 2014).

Although serum ferritin is clinically used to estimate body iron stores, it reflects approximately 1% of the total iron storage pool and its measurement can be confounded by many conditions such as inflammation, abnormal liver function and ascorbate deficiency. In contrast to serum ferritin, liver iron can serve as a better indicator of whole body iron; however, liver iron does not reflect heart iron. Significant cardiac iron overload and toxicity can occur despite low liver iron concentration (He, 2014).

The disparity between cardiac and liver iron levels can best be explained by differences in mechanisms and kinetics of cardiac and hepatic iron uptake/clearance. Serial assessment of liver and cardiac iron demonstrates that cardiac iron changes lag corresponding changes in liver iron concentration (Noetzli et al., 2008).

The liver is the dominant storage organ for excess iron and acquires excess transferrin and non-transferrin bound iron; it also mobilizes iron rapidly and efficiently in times of demand or in response to iron chelation. In contrast, the heart has robust mechanisms to prevent excessive transferrinmediated uptake. Pathologic myocardial iron overload occurs when iron binding capacity is saturated and labile free iron species begin to circulate. Even then, cardiac iron uptake is delayed compared to many other extrahepatic organs, including the pancreas. Thus, many young patients can exhibit severe hepatic iron loading with no evidence of cardiac iron loading (Wood and Noetzli, 2010).

Liver iron was assessed by needle biopsy or, more recently, by non-invasive magnetic resonance imaging (MRI). As liver iron correlates with total body iron, an alternative to evaluating body iron overload is the measurement of liver iron concentration (LIC). MRI has the advantage of not being invasive and allows an anatomical view of iron overload in the liver. This method enables measurement of iron in milligrams per gram of tissue and estimates of the risk of organic diseases. This technique has also the advantage of being reproducible with no exposure to radiation (*Angulo et al.*, 2008).

The measurement of cardiac iron posed a great challenge to the society. Not only endomyocardial biopsy is highly risky, but the measurement taken is also potentially inaccurate due to the small size of the sample obtained and heterogeneous deposition of cardiac iron. The introduction of cardiovascular magnetic resonance (CMR) provided a reliable measure of tissue iron and revolutionized our understanding and management of iron induced cardiomyopathy (*He*, 2014).

Magnetic resonance imaging has the ability of being non-invasive, inexpensive, and widely available in developed countries. It does not image the iron directly but instead images water protons as they diffuse near iron deposits in the tissue of interest. The iron acts as little magnets, destroying the homogeneity of the magnetic field in iron laden tissues. The moving water protons each experience significantly different magnetic profiles and become desynchronized from one another. This causes the image to darken at a rate proportional to the iron concentration (*Wood and Ghugre*, 2008).

Pancreatic iron overload can cause impairment of the exocrine and endocrine function of the pancreas leading to impaired glucose tolerance and diabetes mellitus. Early assessment of pancreas iron and tailored chelation could prevent diabetes and preserve pancreatic reserve. Moreover,