The Role of Treg Cells and FoxP3 Expression in the Immunity of B Thalassemia Major and B Thalassemia Trait Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

Presented by

Heba Othman Ragab Mohammed M.B.B.CH

Faculty of Medicine - Cairo University

Supervised by

Prof. Dr. Ahmed Al Saeed Hamed

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof. Dr. Amira Abd-Monem Adly

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Eman Abdel Rahman Ismail

Consultant of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Ahmed Al Saced Hamed**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions and constant help.

I am deeply thankful to **Prof. Dr. Amira**Abd El Monem Adly, Professor of Pediatrics,
Faculty of Medicine, Ain Shams University, for her great
help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr. Eman Abdel Rahman Ismail,** Consultant of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kindness, supervision and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Heba Osman Mohamed

List of Contents

Title	Page No.
List of Tables	
List of Figures	
List of Abbreviations	
Abstract	vii
Introduction	
Aim of the Work	4
Review of Literature	
Thalassemia	5
Etiology and Classification	5
World distribution of thalassemia	7
Genetics of Thalassemia in Egyptian population	8
Beta-thalassemia major	9
Pathophysiology of β-Thalassemia	12
Clinical picture of thalassemia	14
Manifestations of renal dysfunction in thalassemia	a24
Management of thalassemia major	30
Osteoporosis	
Lifestyle and diet in beta-thalassemia	34
Laboratory findings of thalassemia	36
Imaging Studies	
Magnetic resonance imaging for assessment of iron	
in thalassemic patients	
Regulatory T Cells	45
Definition and characterization	47
Development	48
The environment of regulatory T cell biology	
Identification of Treg cells	
S	71

List of Contents

Title	Page No.
Induced regulatory T cells	74
Treg -mediated suppression	79
Future therapeutic perspective	85
Patients and Methods	86
Results	94
Discussion	110
Summary	119
Conclusion	122
Recommendations	123
References	124
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Summary of cytokines that influe Tregs	
Table (2):	Resting and activated Tregs	61
Table (3):	Comparison between β-TM patients controls as regard demographic data.	
Table (4):	Clinical data of the studied β-patients	
Table (5):	Laboratory data of the studied β-patients	
Table (6):	Comparison between β-TM patients control group as regards C lymphocytes and Tregs	D4+
Table (7):	CD4+ T lymphocytes and Tregs relation to clinical characteristics o TM patients	of β-
Table (8):	Correlation between CD4+ lymphocy and Tregs and clinical and laborate parameters among β-TM patients	tory
Table (9):	Multiple linear regression analysis variables related to CD4+ T lymphocy in patients with β-thalassemia major	for ytes
Table (10):	Multiple linear regression analysis variables related to Tregs in patie with β-thalassemia major	for ents

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Natural and inducible regulatory	Т
	cells	46
Figure (2):	Treg cell differentiation as a	
	alternative agonist antigen-induce	
T ! (0)	cell fate	
Figure (3):	A model of tTReg cell fate specification	
E' (4)	by TCR and accessory signals	
Figure (4):	TReg cell recirculation ar	
	transcriptional control of TReg control	
Figure (5):	Proposed functions of regulatory	
rigure (9).	-	67
Figure (6):	T regulatory (Treg) cells in the contr	
1 180110 (0)	of an allergic reaction	
Figure (7):	Targets of regulatory T cells an	
	mechanisms of suppression.	
Figure (8):	Targeting Treg cells in tumors	84
Figure (9):	Flow cytometric analysis of Tre	gs
	among patients with β -thalassem	ia
	major.	
Figure (10):	Distribution of Tanner score f	
	pubertal staging among β-T	
T' (11)	patients.	
Figure (11):		
	patients compared with health controls.	ny 95
Figure (12):		
Figure (12):	patients with β -thalassemia maj	
	and controls.	
Figure (13):	Percentage of T regulatory cells	
8 (10)*	patients with β -thalassemia major ar	
	controls.	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (14):	Percentage of CD4+ T lymphocytes	
	β-thalassemia major patients	
	relation to spleen status.	
Figure (15):		
	major patients in with and without	
E' . (10)	pulmonary hypertension risk.	
Figure (16):		
	major patients with ferritin ≥ 25	
Figure (17).	and <2500 µg/L.	
Figure (17):	Correlation between the percentage CD4+ T lymphocytes and T regulate	
	cells (Tregs) among β-TM patients	•
Figure (18):		
1 1gui C (10).	CD4+ T lymphocytes and WBCs cou	
	among β-TM patients	
Figure (19):	· · ·	
8 . ,	CD4+ T lymphocytes and indire	
	bilirubin among β-TM patients	
Figure (20):	Correlation between the percentage	
	CD4+ T lymphocytes and ALT amo	ng
	β-TM patients.	105
Figure (21):	_ _	
	T regulatory cells and WBCs cou	
	among β-TM patients	
Figure (22):	Correlation the percentage of betwe	
	T regulatory cells and indire	
E' . (99)	bilirubin among β-TM patients	
Figure (23):		
	T regulatory cells and ferritin lev	
	among β-TM patients	107

List of Abbreviations

Abb.	Full term
Λ DC _e	Antigen presenting cells
	Activated partial thromboplastn time
	Activatea partiai infomoopiasin iime All Trans retinoic acid
	BCL-2-interacting mediator of cell death
	Cluster differentiation
	Cardiac magnetic resonance
CTL	cytotoxic T lymphocyte
CTLA-4	Cytotoxic T lymphocyte-associated antigen 4
DCs	$ Dendretic\ cells$
DFO	Deferoxamine
<i>EAE</i>	Experimental autoimmune encephalomyelitis
	Ethylene diamine tetra-acetic acid
FITC	Fluorescein isothiocyanate
FOXP3	Forkheadboxes P3
FVIII	Factor VIII
<i>GALT</i>	Gut-associated lymphoid tissue
<i>GFP</i>	Green fluorescent protein
<i>GITR</i>	Glucocorticoid-induced tumor necrosis factor
GRAIL	Gene related to anergy in lymphocytes
HLA	Human leukocyte antigen
HLA	Human leukocytic antigen
<i>IDDM</i>	Insulin dependent diabetes
<i>IFN</i>	Interferon
<i>Ig</i>	Immuno globulin
<i>IL</i>	Interleukin
<i>IL1RAcP</i>	IL-1 receptor accessory protein

List of Abbreviations (cont...)

Abb.	Full term
<i>IQR</i>	Inter-quartile range
iTreg	Inducible regulatory T cell
Kip1	Kinase inhibitor p27
<i>LAG-3</i>	Lymphocyte activation gene-3
<i>MAP</i>	Mitogen-activated protein
<i>MAP</i>	$Monoclonal\ antibody$
<i>MCH</i>	Mean corpuscular Hb
MCL1	Myeloid leukemia cell differentiation 1
<i>MCV</i>	Mean corpuscular volume
<i>MHC</i>	Major histocompatibility complex
mTOR	Mechanistic target of rapamycin,
<i>NAG</i>	N-acetyl- D -glucosaminidase
NKT	Natural killer T cell
NTBI	Non-transferrin-bound iron
nTreg	Naturally occurring regulatory T cell
PC5	Phycoerythrin-Cyanine 5
PE	Phy coery thrin
PI3K	Phosphatidylinositol 3-kinase
<i>PQC</i>	Protein quality control
<i>PSA</i>	Polysaccharide A
pTreg	Peripheral induced regulatory T cell
$ROR\gamma t$	$retinoid ext{-}related\ orphan\ receptor\ \gamma t$
SD	Standard deviation
<i>TAA</i>	tumour-associated antigen
TCR	$T\ cell\ receptor$
Teff	Effector T $cell$

List of Abbreviations (cont...)

Abb.	Full term
<i>TF</i>	Tissue factor
<i>TGF</i>	Transforming growth factor
<i>TH</i>	T helper
TR	T regulatory
TRAIL	TNF-related apoptosis-inducing ligand
<i>Treg</i>	Regulatory T cell
<i>tTreg</i>	Thymus induced regulatory T cell
<i>UPS</i>	Ubiquitin – proteasome system
<i>B-TM</i>	Beta Thalassemia Major
γc	Common γ chain

Abstract

Background: Immunological abnormalities in thalassemia are caused by either the illness, or therapy methods. The basis of the pathogenesis of the immunodeficiency in thalassemia is iron overload and allogenic stimulation caused by multiple blood transfusions. T regulatory cells (Tregs) are a component of the immune system that constitutes a key mechanism in maintaining peripheral self-tolerance through the control of auto-reactive lymphocyte activation. Aim: To determine the frequency of Tregs (CD4⁺CD25⁺CD127⁻) in children and adolescents with βthalassemia major and assessed their relation to the clinical and laboratory characteristics of patients including transfusion therapy, iron overload and alloimmunization. Methods: Sixty β-TM patients studied focusing on transfusion history and chelation therapy. Hematological and biochemical data including markers of hemolysis and serum ferritin were assessed. Patients' records were analyzed for the presence of alloantibodies. Assessment of T regulatory cells (CD4⁺CD25⁺CD127⁻) using flow cytometry. Patients were compared with 30 healthy controls. Results: The percentages of CD4⁺ T lymphocytes and Tregs were significantly reduced in β-TM patients compared with the control group (p<0.05). Patients with patients with splenectomy, heart disease and PH risk had lower levels of these cells than those without. The percentage of Tregs was decreased among patients with serum ferritin ≥2500 µg/L compared with patients below this cutoff and in patients with history of alloimmune antibodies. There were significant negative correlations between Tregs and each of total and indirect bilirubin and ferritin levels while they were positively correlated with WBCs counts and hemoglobin. Multivariable linear regression analysis showed that WBCs count, hemoglobin and serum ferritin are the significant independent variables related to Tregs in patients with β -TM. Conclusion: Children and adolescents with β -TM may encounter a state of immune dysfunction. Low frequency of Tregs in β-TM patients may contribute to the formation of alloantibodies. Alterations in Tregs are more evident in relation to iron overload and in patients with cardiovascular complications which may reflect involvement of Tregs in disease severity. It is important to assess the suppressive activity of these cells in standard proliferation assays to examine whether their function is disrupted in β -TM together with the alteration in their frequency or not.

Introduction

B-thalassemias are heterogeneous autosomal recessive hereditary anemias characterized by reduced or absent β-globin chain synthesis. Approximately 68,000 children are born with various thalassemia syndromes each year (Modell and Darlison, 2008; Origa et al., 2016).

Thalassemia was first clinically described nearly a century ago and treatment of this widespread genetic disease has greatly advanced during this period. Recently, there has been a rejuvenated interest in studying thalassemia at the basic science level, leading to the discovery of previously unknown mechanisms leading to anemia and enabling the development of novel therapies (*Rund*, 2016).

Patients with β -thalassemia major (β -TM) require regular transfusions of red blood cells to survive (*Rachmilewitz and Giardina*, 2011). However, repeated transfusions cause iron overload, with life-threatening complications, such as endocrine dysfunction, cardiomyopathy, liver disease and, ultimately, premature death (*de Dreuzy et al.*, 2016).

β-TM have an increased risk for serious infections, due to that a basic defect in the host defense and this may be related to the iron overload, chronic immune-stimulation by repeated blood transfusions, splenectomy and immune deficiency. Changing in lymphocyte subsets include a greater number and activity of suppressor T cells (CD-8), reduced proliferative

capacity and a number and level of activity of helper T- Cells (CD-4) leading to decreased CD4/CD8 ratio, as well as defective activity of natural killer (NK) cells. High immune globulins were reported and B-lymphocytes were found to be increased, activated with impaired differentiation, impairment of immunoglobulin secretion accompanied by increased levels of IgG, IgM and IgA. Neutrophils and macrophages are associated with defective chemo taxis and phagocytosis (Javad et al., 2011).

Immunological abnormalities in thalassemia are caused by either the illness, or therapy methods. The basis of the pathogenesis of the immunodeficiency in thalassemia is iron overload and allogenic stimulation caused by multiple blood transfusions. There are not numerous data about efficiency of immunocorrection therapies for thalassmia patients (Asadov, 2014).

A major complication of transfusion therapy alloimmunization, which may result in life-threatening delayed hemolytic transfusion reactions in addition to difficulties in obtaining compatible blood for transfusion (Bauer et al., 2007).

T regulatory cells (Tregs) are a component of the immune system that constitutes a key mechanism maintaining peripheral self-tolerance through the control of autoreactive lymphocyte activation and the prevention of harmful effects of such activation. These cells are involved in shutting down immune responses after they have successfully eliminated invading organisms (Caramalho et al., 2015).

The different populations of Tregs share a common characteristic of immunosuppressive capability, but differ in their cell surface markers, types, and site of formation. Among these populations, natural Tregs, characterized by the expression of CD4⁺CD25⁺ and the transcription factor (Foxp3) (Sakaguchi et al., 1995), have been well studied and accumulating evidence suggests that this population plays a crucial role in the maintenance of immunological self-tolerance and negative control of pathological as well as physiological immune responses (Fehe'rvari and Sakaguchi, 2004).

At present, Foxp3 is the most specific molecular marker for thymic or peripheral Tregs in rodents and humans (Valencia and Lipsky, 2007). It is believed that CD127 expression is down-modulated on the Treg cells and that FoxP3 interacts with the CD127 promoter and contributes to reduced expression of CD127 in Tregs (Liu et al, 2006). Recently, the frequency of Tregs (CD4⁺CD25⁺CD127⁻) has been found to be decreased in children with hemophilia A with inhibitor formation (El-Asrar et al., 2016).

Literature is limited about the role of Tregs in chronically transfused patients. Alterations in immunoregulatory T cell subsets of regularly transfused SCD patients with alloantibodies has been reported compared to those without, specifically a reduction in Treg activity, an increase toward Th2 responses and lower serum levels of IL-10 in the alloimmunized cohort (Bao et al., 2011).