MR Diffusion Weighted Imaging in non Infarct Brain Lesions

Essay

Submitted for Partial Fulfillment of Master Degree in **Radiodiagnosis**

By

Ibrahim Badawy Rady

M.B., B.Ch.

Ain Shams University

Under Supervision of

Prof. Dr. Amany Emad Rady

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr. Khaled Ahmed Mohamed Ali

Lecturer of Radiodiagnosis

Faculty of Medicine - Ain Shams University

Faculty of Medicine

Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

- First and foremost, I submit all my gratitude to Allah who gave me the strength to accomplish this work.
- I would like to express my sincere appreciations and cordial thanks to **Dr. Amany Emad Rady**, Professor of Radiology, Ain Shams University, for her unlimited help, kind guidance, and continous support.
- I would also like to express my sincere thanks and deepest gratitude to **Dr. Khaled Mohamed**Ahmed Ali, Assistant Professor of Radiology, Ain Shams University, to whom I am very grateful and deeply indebted for his kind supervision, continuous guidance, fruitful criticism and encouragement.
- Finally I could not miss to thank all members of Radiology Department, Ain Shams University Hospitals.
- Also I am thankful to My family for their support throughout my life and this work.

Contents

Subjects	Page
List of Abbreviations	I
List of Figures	III
Introduction	1
Aim of Work	3
Review of literature	
- Cross sectional MRI anatomy	4
- The Physics of Diffusion	28
- Diffusion-weighted MR imaging ischemia	
- Diffusion-weighted MR Imaging in non of the brain	
Summary	103
Conclusion and Recommendations	104
References	105
Arabic Summary	

List of Abbreviations

ADC : Apparent diffusion coefficient

CE : Contrast enhanced

CNS : Central nervous system

CPA : Cerebellopontine angle

CPM : Central pontine myelinolysis

CT : Computed tomography

DAI : Diffuse axonal injury

DWI : Diffusion weighted imaging

eADC : Exponential ADC

EPM : Extra-pontine myelinolysis

FLAIR : Fluid attenuation inversion recovery

FOV: Field of view

FSE : Fast spin echo

GBM : Glioblastoma multiform

GD-DTPA: Gadolinium diethylenetriaminepentacetate

HIE : Hypoxic ischemic encephalopathy

i.e : Id est (latin) = that is

JPA : Juvenile pilocytic astrocytoma

MRI : Magnetic resonance imaging

MS : Multiple sclerosis

n : number

🕏 List of Abbreviations 🗷

PCNSL : Primary CNS lymphoma

PRES: Posterior reversible encephalopathy syndrome

TB: tuberculosis

TE: Time for echo

TR : Time of repetition

WE : Wernicke's encephalopathy

List of Figures

Figure	Title	Page
Fig. (1)	Axial T2WI of the brain	6
Fig.(2)	Axial T2WI of the brain near the vertex	7
Fig.(3)	Sagittal T1-weighted image in a	8
	paramidline location	
Fig.(4)	Sagittal T1-weighted far-lateral	9
Fig.(5)	Axial T2-weighted image at the level	9
	of the midbrain	
Fig.(6)	Sagittal T1-weighted midline image	11
Fig.(7)	Coronal T2-weighted image	12
Fig.(8)	Axial T2-weighted image through the basal	14
	ganglia	
Fig.(9)	Coronal T2WI MR showing primary	15
	(tentorial) fissure	
Fig.(10)	Axial T1WI at level of middle	15
	cerebellar peduncles	
Fig.(11)	Coronal T2WI MR showing some of	16
	vermian lobules	
Fig.(12)	Coronal T2WI MR image showing the	17
	horizontal fissure	
Fig.(13)	Axial T1WI showing the inferior	18
	cerebellar peduncle	
Fig.(14)	Axial T2-weighted image through the	19
	basal ganglia	

🕏 List of Figures 🗷

Figure	Title	Page
Fig.(15)	Sagittal T2-weighted image	20
	showing the brainstem	
Fig.(16)	Axial T2-weighted image through the	22
	inferior midbrain	
Fig.(17)	Axial T2WI image through the inferior pons	23
Fig.(18)	Axial T1WI image through the pons at level	23
	of CN5 root	
Fig.(19)	Axial T2-weighted image through the	24
	medulla	
Fig.(20)	Fat-saturated sagittal T2WI images,	26
	depicts normal sella	
Fig.(21)	Unenhanced sagittal T1WI fat-saturated	26
	image through the midline sella turcica	
Fig.(22)	Enhanced sagittal Tl fat-saturated MR	27
	image through the midline	
Fig.(23)	illustrates the Brownian motion	28
Fig.(24)	Diagram shows the diffusion-driven	30
	random trajectory	
Fig.(25)	Diffusion-weighted spin echo sequence	32
Fig.(26)	Two traditional structural MR images	33
	and a diffusion-weighted image	
Fig.(27)	Diffusion image and ADC maps of a	34
	subject with edema	
Fig.(28)	Patient with acute onset of left sided	40
	weakness	

🕏 List of Figures 🗷

Figure	Title	Page
Fig.(29)	Case of cerebral abscess	42
Fig.(30)	Pathologically proved cerebral abscess	43
Fig.(31)	Patient with Right subdural empyema	44
Fig.(32)	Possible Herpes encephalitis	46
Fig.(33)	Herpes encephalitis	47
Fig.(34)	Tuberculous meningitis with vasculitis	49
Fig.(35)	Tuberculous abscess	50
Fig.(36)	Creutzfeld-Jacob disease (sporadic type)	51
Fig.(37)	Creutzfeldt–Jacob disease	52
Fig.(38)	Diffuse axonal injury	55
Fig.(39)	diffuse axonal injury lesions	56
Fig.(40)	Subacute hematoma	57
Fig.(41)	chronic intracerebral hematoma	59
Fig.(42)	Epidermoid cyst	61
Fig.(43)	Left temporal arachnoid cyst	62
Fig.(44)	Postoperative residual epidermoid tumor	62
Fig.(45)	Forty nine-year-old woman with	64
	meningioma	
Fig.(46)	MRI images of a patient with atypical	64
<u> </u>	meningioma	
Fig.(47)	High grade glial tumor and gliomatosis	66
	cerebri	
Fig.(48)	Representative low-ADC lesion in a patient	68
<u> </u>	with glioblastoma	
Fig.(49)	a patient with primary CNS lymphoma	69

🕏 List of Figures 🗷

Figure	Title	Page
Fig.(50)	A 63-year-old female with diffuse large	70
	B-cell lymphoma	
Fig.(51)	Eleven-year-old boy with cerebellar juvenile	71
	pilocytic astrocytoma	
Fig.(52)	A 5-year-old boy with medulloblastoma	72
Fig.(53)	Sixteen-year-old boy with ependymoma	73
Fig.(54)	ADC maps in cerebellar JPA and	74
	medulloblastoma	
Fig.(55)	A 41-year-old man with a poorly	77
	differentiated adenocarcinoma from the lung	
Fig.(56)	A 67-year-old man with a well differentiated	78
	adenocarcinoma	
Fig.(57)	Patient with biopsy proven glioblastoma	80
	multiforme	
Fig.(58)	Ring enhancing lesion in right frontal lobe	80
Fig.(59)	Appearance of hypoxic-ischemic	82
	encephalopathy on axial DWI	
Fig.(60)	Neonatal HIE in a 6- day- old boy	84
Fig.(61)	A 43-year-old woman with arterial	87
	hypertension	
Fig.(62)	Hypertensive encephalopathy	88
Fig.(63)	5-fluouracil (5-FU) toxicity in a 62-year-old	90
	man	
Fig.(64)	Acute Wernicke's Encephalopathy	92
Fig.(65)	Wernicke's encephalopathy	93

$\begin{cases} \ensuremath{\mathfrak{D}} \ensuremath{\mbox{Tigures}} \ensuremath{\mbox{$arkstar{\models}$}} \end{aligned}$

Figure	Title	Page
Fig.(66)	Maple syrup urine disease	95
Fig.(67)	Adrenoleukodystrophy	95
Fig.(68)	Multiple sclerosis type IA lesion female	98
Fig.(69)	Type IVB lesions in a patient with MS	99
Fig.(70)	Extra-pontine myelinolysis	101
Fig.(71)	Osmotic demyelination	102

Introduction

Diffusion weighted imaging (DWI) is a relatively new method in which the images are formed by the contrast produced by the random microscopic motion of water molecules in different tissues. Although DWI has been tried for different organ systems, it has been found its primary use in the central nervous system ⁽¹⁾.

Diffusion-weighted (DW) magnetic resonance (MR) imaging provides potentially unique information on the viability of brain tissue. It provides image contrast that is dependent on the molecular motion of water, which may be substantially altered by disease. The method was introduced into clinical practice in the middle 1990s, but because of its demanding MR engineering requirements—primarily high-performance magnetic field gradients—it has only recently undergone widespread dissemination (2).

Diffusion-weighted imaging (DWI) has greatly enhanced the ability of MRI to diagnose cerebral infarct early and accurately. This technique exploits the phenomenon of diffusion, which is related to Brownian motion at the molecular level. DWI takes advantage of the fact that intracellular water molecules are much more limited in their movement than extracellular ones, because they quickly bump into the cell membrane that contains

them. The more restricted the movement of water, the brighter it will be on DWI sequences ⁽³⁾.

DWI consists of a DW image, also called the diffusion trace, and an apparent diffusion coefficient (ADC) map. DW image is a T2-weighted echoplanar background image attenuated by the rate of apparent diffusion. DW image, together with qualitative and quantitative assessment of the ADC map has been widely used in the diagnosis of acute cerebral infarction, owing to the reliable distinction of cytotoxic and vasogenic edema⁽²⁾.

Diffusion-weighted MR imaging not only has the advantage of enabling differentiation of acute stroke from chronic stroke ⁽⁴⁾. DWI has recently been described and suggested in the differential diagnosis of various noninfarct lesions of the brain which are hyperintense in the diffusion trace image, such as infectious, neoplastic and diseases, encephalopathies demyelinating (including hypertensive, hypoxicischemic, eclamptic, metabolic mitochondrial encephalopathies) and leukodystrophies, vasculopathies, vasculitis and hemorrhage and trauma. The pathophysiologic changes for such hyperintense DWI include high viscosity, high cellularity, vacuolization and compartmentalization of water (2).

Aim of the work

To study the role of Diffusion weighted MR imaging in the evaluation of non-infarct lesions of the brain.

Cross Sectional Magnetic Resonance Anatomy of the Brain

Computed tomography (CT) and magnetic resonance imaging (MRI) have revolutionized the study of the brain by allowing doctors and researchers to look at the brain noninvasively. These diagnostic imaging techniques have allowed for the first time the noninvasive evaluation of brain structure, allowing doctors to infer causes of abnormal function due to different diseases ⁽⁵⁾.

The exquisite detail provided by brain magnetic resonance imaging scans can make interpretation simultaneously straightforward and complicated, particularly to the novice. For this reason, it is essential to become familiar with normal structures before describing the pathologic condition ⁽⁶⁾.

The overwhelming advantage of MR imaging is its ability to provide images with increased signal to noise ratios. Tissue characteristics with respect to different imaging sequences provide valuable clues when interpreting an MR image of the brain. Therefore, it is important to understand the accentuated tissue features on each scan ⁽⁷⁾.