# ROLE OF HELICOBACTER BACTERIA IN COLITIS AND COLO-RECTAL NEOPLASMS HISTOPATHOLOGICAL AND IMMUNOHISTOCHEMICAL STUDY

Thesis

Submitted for partial fulfillment of M.Sc. degree in Pathology

Presented By

Ahmed Naeem Mohamed Eesa (M.B.B.Ch.)

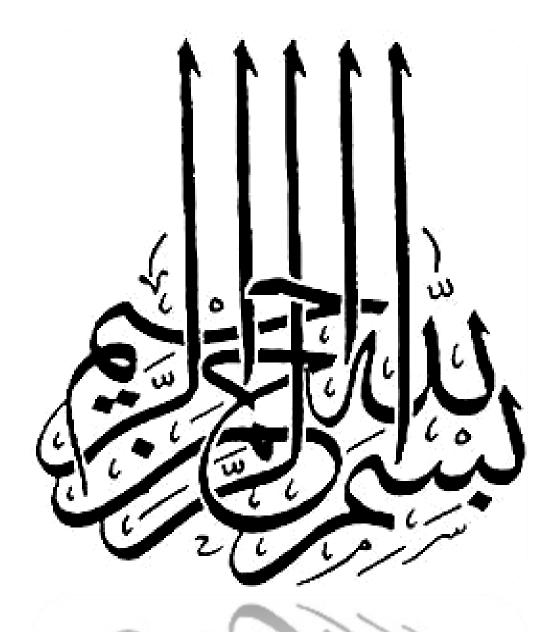
Supervised by

### Prof. Dr. Samia Mohamed Gabal

Professor of Pathology

Faculty of Medicine - Cairo University

# Assis. Prof. Dr. Hala Naguib Hosni


Assistant professor of Pathology
Faculty of Medicine – Cairo University

#### Dr. Samar Abd El-Monem El-Sheikh

Lecturer of Pathology

Faculty of Medicine - Cairo University

Faculty of Medicine Cairo University 2012



О

٦

﴿ قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْ تَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ ﴾ عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ ﴾

(البقره ۳۲)

صدق الله العظيم

#### **ACKNOWLEDGEMENTS**

I would like to express my profound gratitude and immense appreciation to Prof Dr. Samia Mohamed Gabal, professor of Pathology, Cairo University, for her keen interest in the progress of this work, her constructive criticism as well as her great patience in reading and revising the manuscripts. She was very generouse in providing me with her knowledge and scientific materials.

Sincere thanks are due to Prof Dr. Kala Naguib Kosni, assistant professor of Pathology, Cairo University, for her helpful suggestions and

valuable advice.

Special thanks are due to Dr. Samar Abd El-Monem El-Sheikh, lecturer of Pathology Cairo

University, for her great assistance.

I must thank the team of the laboratories of Pathology Department, Cairo University Kospitals for their help in carrying out laboratory investigations of patients under study.

Abstract

#### **ABSTRACT**

This study aims to determine the role of *Helicobacter* organisms in the development of colitis or colorectal neoplasia and to correlate *Helicobacter* immunohistochemical positivity with other clinicopathologic parameters. This retrospective study was conducted on fifty cases, including 10 (20%) cases of normal colon, 15 (30%) cases of colitis, 10 (20%) cases of colonic tubular adenoma and 15 (30%) cases of colorectal carcinoma. Immunohistochemical detection method rather than routine histochemistry with Giemsa was used for the detection of *H. pylori*. This study showed that:

- Anti-*H.Pylori* antibodies were positive in 14 (28%), however 36 (72%) were negative.
- Among normal participants, anti- *H. Pylori* antibody staining was positive in 2 (20%) and negative in 8 (80%).
- Among patients with colitis, anti- *H. Pylori* antibody staining was positive in 5 (33.3%) and negative in 10 (66.7%).
- Among patients with adenoma, anti- *H. Pylori* antibody staining was positive in 4 (40%) and negative in 6 (60%).
- Among patients with carcinoma, anti- *H. Pylori* antibody staining was positive in 3 (20%) and negative in 12 (80%).
- The prevalence of *H. Pylori* positivity is not statistically significant in cases of normal colon, colitis, tubular adenoma or carcinoma.
- However risk estimation as determined by Odds ratio showed that H.
   Pylori positivity is most likely present in specimens with colitis (Odds ratio = 1.444) and adenoma (Odds ratio = 2.000).

<u>Keywords</u>: ( Helicobacter bacteria – Colitis – Colorectal neoplasms – Immunohistochemistry )

## **CONTENTS**

|                                                    | Page  |
|----------------------------------------------------|-------|
| ACKNOWLEDGEMENTS                                   | ii    |
| LIST OF ABBREVIATIONSLIST OF FIGURESLIST OF TABLES | vi    |
| ABSTRACT                                           | X     |
| INTRODUCTION AND AIM OF THE WORK                   | 1     |
| REVIEW OF LITERATURE                               | 5     |
| I. Anatomy of the Colon                            |       |
| III. Colorectal Neoplasms                          | 37    |
| IV. Helicobacter Pylori                            | 96    |
| MATERIALS AND METHODS                              | 108   |
| RESULTS                                            | 113   |
| DISCUSSION                                         | 136   |
| SUMMARY                                            | 140   |
| CONCLUSION                                         | 143   |
| RECOMMENDATION                                     | 144   |
| REFERENCES                                         |       |
| ARABIC SUMMARY                                     | ••••• |

# LIST OF ABBREVIATIONS

| AC I     | Amesterdam Criteria I                      |
|----------|--------------------------------------------|
| ACF      | Aberrant Cryptic Foci                      |
| AJCC     | American Joint Comitee on Cancer           |
| APC      | Adenomatous Polyposis Coli                 |
| BAX      | Bcl-2–associated X protein                 |
| CD       | Crohn's Disease                            |
| CEA      | Carcinoembryonic Antigen                   |
| CMV      | Cytomegalovirus                            |
| c-myc    | Oncogene                                   |
| CRC      | Colorectal Carcinoma                       |
| CRM      | Circumfrential Resection Margin            |
| CTC      | Computed Tomographic Colonography          |
| DALM     | Dysplasia Associated Lesion or Mass        |
| DCBE     | Double Contrast Barium Enema               |
| DCC gene | Deleted in colon cancer Gene               |
| DNA      | Deoxyribonucleic acid                      |
| EHEC     | Enterohemorragic E. coli                   |
| EIEC     | Enteroinvasive <i>E. coli</i>              |
| FAP      | Familial Adenomatous Polyposis             |
| FOBT     | Focal Occult Blood Test                    |
| FSIG     | Flexible Sigmoidoscopy                     |
| GIT      | Gastrointestinal Tract                     |
| H.Pylori | Helicobacter Pylori                        |
| HNPCC    | Heriditary Non-polyposis Colorectal Cancer |
| HSP      | Henoch Shonlein Purpura                    |
| IBD      | Inflammatory Bowel Disease                 |
| IGF2     | Insulin-like growth factor 2               |
| K-ras    | Oncogene                                   |

| LOH        | Loss of Heterozygosity                      |
|------------|---------------------------------------------|
| MAC        | Mucinous Adenocarcinoma                     |
| MAP kinase | Mitogen-activated protein kinase            |
| MMP7       | Matrix Metalloproteinase 7                  |
| NEC        | Necrotizing Enterocolitis                   |
| NEC        | Neuroendocrine Carcinoma                    |
| NET        | Neuroendoendocrine Tumour                   |
| P16        | Tumor suppressor gene                       |
| P53        | Tumor suppressor gene                       |
| PMNs       | Polymorph Nuclear Leucocytes                |
| PPARs      | Peroxisome proliferator-activated receptors |
| SCC        | Squamous Cell Carcinoma                     |
| SMAD4      | Tumor suppressor                            |
| TGF-β      | Transforming growth factor beta             |
| TGFβR-II   | Transforming growth factor beta receptor-II |
| TME        | Total Mesorecatal Excision                  |
| UC         | Ulcerative Colitis                          |
| UICC       | Union International Contre Le Cancer        |
| WHO        | World Health Organization                   |

# LIST OF FIGURES

| No.       | Description                                                                                                                                                | Page |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Fig. (1)  | Sections of the large bowel.                                                                                                                               | 5    |
| Fig. (2)  | Arterial supply and venous drainage of the large bowel                                                                                                     | 10   |
| Fig. (3)  | Regional lymph nodes of the large bowel                                                                                                                    | 12   |
| Fig. (4)  | Colonic crypt organization                                                                                                                                 | 13   |
| Fig. (5)  | Opened small bowel in a patient with Crohn's disease                                                                                                       | 21   |
| Fig. (6)  | A Crohn's stricture of the ileum                                                                                                                           | 22   |
| Fig. (7)  | Cobblestone change of the mucosa of the terminal ileum in a patient with Crohn's disease                                                                   | 23   |
| Fig. (8)  | Mucosal pseudopolyps (inflammatory pseudopolyps) of<br>the terminal ileum in a patient with Crohn's disease                                                | 23   |
| Fig. (9)  | Submucosal involvement by lymphoid aggregates in Crohn's disease, and marked expansion/duplication of the muscularis mucosae, indicative of previous full- | 24   |
| Fig. (10) | A crypt abscess demonstrating active, neutrophilic, inflammation in Crohn's disease                                                                        | 25   |
| Fig. (11) | A granuloma in the mucosa of a case of Crohn's disease.                                                                                                    | 26   |
| Fig. (12) | Aphthoid ulcer overlying a Peyer's patch in the terminal ileum of a patient with Crohn's disease                                                           | 27   |
| Fig. (13) | Deep knifelike, fissuring, transmural ulcer in Crohn's disease                                                                                             | 27   |
| Fig. (14) | Ulcerative colitis specimen showing hyperaemic mucosa and linear ulcers                                                                                    | 28   |
| Fig. (15) | Chronic architectural changes in ulcerative colitis (UC),                                                                                                  | 29   |
| Fig. (16) | Basal plasmacytosis. Plasma cells separate the crypt bases from the muscularis mucosae                                                                     | 30   |

| Fig. (17)        | High-power view of a crypt abscess shows the crypt to    | 31  |
|------------------|----------------------------------------------------------|-----|
|                  | be dilated and filled with neutrophils and debris        |     |
| <b>Fig.</b> (18) | Low-grade glandular dysplasia in a patient with          | 32  |
|                  | longstanding ulcerative colitis                          |     |
| <b>Fig.</b> (19) | High-grade dysplasia, showing significant cytologic      | 33  |
|                  | atypia, with rounding of the nuclei and a greater degree |     |
|                  | of pseudostratification                                  |     |
| Fig. (20)        | Colonic polyp                                            | 37  |
| Fig. (21)        | Genetic model of colorectal carcinogenesis               | 50  |
| Fig. (22)        | Adenoma-carcinoma sequence of colorectal cancer          | 51  |
| Fig. (23)        | Colorectal cancer staging                                | 78  |
| Fig. (24)        | H.pylori structure                                       | 97  |
| Fig. (25)        | Colonic biopsy (serial sections)                         | 100 |
| Fig. (26)        | Distribution of the study group according to colonic     | 113 |
|                  | biopsy results.                                          | 110 |
| Fig. (27)        | Distribution of cases with colorectal cancer according   | 115 |
|                  | to the site of involvement                               |     |
| Fig. (28)        | Distribution of cases with colorectal cancer according   | 115 |
|                  | to the size of the lesion.                               | _   |
| Fig. (29)        | Distribution of cases with colorectal cancer according   | 116 |
|                  | to their gross pattern.                                  |     |
| Fig. (30)        | Distribution of cases with colorectal cancer according   | 117 |
|                  | to their histologic type.                                |     |
| Fig. (31)        | Distribution of cases with colorectal cancer according   | 118 |
|                  | to their histologic grade.                               |     |
| Fig. (32)        | Distribution of cases with colorectal cancer according   | 119 |
|                  | to the depth of tumour invasion.                         |     |
| Fig. (33)        | Distribution of cases with colorectal cancer according   | 120 |
|                  | to Duke's stage.                                         |     |
| Fig. (34)        | Anti- H. Pylori antibody staining amoung the study       | 121 |
|                  | group.                                                   |     |

| Fig. (35) | Distribution of anti- H. Pylori antibody staining                                     | 123 |
|-----------|---------------------------------------------------------------------------------------|-----|
|           | amoung each group.                                                                    |     |
| Fig. (36) | Positive staining for Anti H.pylori antibody in a case of normal colon (800X)         | 128 |
| Fig. (37) | H&E picture for the previous case (200X)                                              | 128 |
| Fig. (38) | Negative staining for Anti H.pylori antibody in a case of normal colon (800X)         | 129 |
| Fig. (39) | H&E picture for the previous case (200X)                                              | 129 |
| Fig. (40) | Positive staining for Anti H.pylori antibody in a case of colitis (800X)              | 130 |
| Fig. (41) | H&E picture for the previous case (200X)                                              | 130 |
| Fig. (42) | Negative staining for Anti H.pylori antibody in a case of colitis (800X)              | 131 |
| Fig. (43) | H&E picture for the previous case (200X)                                              | 131 |
| Fig. (44) | Positive staining for Anti H.pylori antibody in a case of tubular adenoma (800X)      | 132 |
| Fig. (45) | H&E picture for the previous case (200X)                                              | 132 |
| Fig. (46) | Negative staining for Anti H.pylori antibody in a case of tubular adenoma (800X)      | 133 |
| Fig. (47) | H&E picture for the previous case (200X)                                              | 133 |
| Fig. (48) | Positive staining for Anti H.pylori antibody in a case of colorectal carcinoma (800X) | 134 |
| Fig. (49) | H&E picture for the previous case (200X)                                              | 134 |
| Fig. (50) | Negative staining for Anti H.pylori antibody in a case of colorectal carcinoma (800X) | 135 |
| Fig. (51) | H&E picture for the previous case (200X)                                              | 135 |

# LIST OF TABLES

| No.               | Description                                                                        | Page |
|-------------------|------------------------------------------------------------------------------------|------|
| Table (1)         | Regional lymph nodes for each segment of the large                                 | 11   |
|                   | bowel                                                                              |      |
| Table (2)         | Genetic changes associated with CRC development                                    | 48   |
| Table (3)         | Risk factors for colorectal cancer.                                                | 55   |
| Table (4)         | Familial risk and colon cancer                                                     | 57   |
| Table (5)         | Features of HNPCC                                                                  | 58   |
| Table (6)         | Revised diagnostic criteria for HNPCC (Amsterdam criteria II)                      | 59   |
| Table (7)         | WHO histological classification of tumours of the colon and rectum                 | 67   |
| Table (8)         | WHO histological classification of tumours of the colon and rectum                 | 73   |
| Table (9)         | Histopathologic grading systems in colorectal carcinoma                            | 75   |
| <b>Table</b> (10) | TNM classification of tumours of the colon and rectum.                             | 77   |
| Table (11)        | TNM stage grouping of tumours of the colon and rectum.                             | 78   |
| <b>Table (12)</b> | Recommended options for colorectal cancer screening in                             | 93   |
|                   | asymptomatic, average-risk individuals.                                            |      |
| <b>Table</b> (13) | Enterohepatic Helicobacter taxa                                                    | 103  |
| <b>Table (14)</b> | Distribution of the study group according to diagnosis                             | 113  |
| <b>Table (15)</b> | Distribution of patients according to gender                                       | 114  |
| <b>Table (16)</b> | Distribution of cases with colorectal cancer according to the site of involvement. | 114  |
| <b>Table (17)</b> | Distribution of cases with colorectal cancer according to the size of the lesion.  | 115  |
| <b>Table (18)</b> | Distribution of cases with colorectal cancer according to their gross pattern.     | 116  |
| <b>Table (19)</b> | Distribution of cases with colorectal cancer according to their histologic type.   | 117  |
| Table (20)        | Distribution of cases with colorectal cancer according to their histologic grade.  | 118  |

| <b>Table (21)</b> | Distribution of cases with colorectal cancer according to     | 119 |
|-------------------|---------------------------------------------------------------|-----|
|                   | the depth of tumour invasion.                                 |     |
| <b>Table (22)</b> | Distribution of cases with colorectal cancer according to     | 120 |
|                   | lymph node metastasis.                                        |     |
| <b>Table</b> (23) | Distribution of cases with colorectal cancer according to     | 120 |
|                   | Duke's stage.                                                 |     |
| Table (24)        | Anti- H. Pylori antibody staining among the study group       | 121 |
| <b>Table (25)</b> | Distribution of anti- H. Pylori antibody staining among       | 122 |
|                   | each group.                                                   |     |
| <b>Table (26)</b> | Correlation between normal subjects on colonic biopsy         | 124 |
|                   | and <i>H. Pylori</i> positivity among the study group         |     |
| <b>Table (27)</b> | Risk estimation of <i>H. Pylori</i> positivity among subjects | 124 |
|                   | with normal colonic biopsy.                                   |     |
| <b>Table (28)</b> | Correlation between colitis on colonic biopsy and <i>H</i> .  | 125 |
|                   | Pylori positivity among the study group                       |     |
| <b>Table (29)</b> | Risk estimation of <i>H. Pylori</i> positivity among subjects | 125 |
|                   | with colitis on colonic biopsy.                               |     |
| <b>Table (30)</b> | Correlation between adenoma on colonic biopsy and <i>H</i> .  | 126 |
|                   | Pylori positivity among the study group                       |     |
| Table (31)        | Risk estimation of <i>H. Pylori</i> positivity among subjects | 126 |
|                   | with adenoma on colonic biopsy.                               |     |
| <b>Table (32)</b> | Correlation between carcinoma and H. Pylori positivity        | 127 |
|                   | among the study group                                         |     |
| Table (33)        | Risk estimation of <i>H. Pylori</i> positivity among subjects | 127 |
|                   | with carcinoma on colonic biopsy                              |     |

## INTRODUCTION

The number of species in the genus Helicobacter has rapidly expanded over the past decade. The genus now includes at least 24 formally named species as well as numerous other helicobacters awaiting formal naming (Fox, 2002).

Helicobacter pylori (H.pylori) is the best known and the most important in terms of global impact on human disease. It infects 50% of the world population and its prevalence varies widely in different parts of the world with average rates of 40–50% in western countries, rising to >90% in the developing world (**Peek and Blaser, 2002**).

H.pylori is a Gram-negative bacterium that has become well adapted to the human stomach via interaction with gastric epithelial cells (**De Luca and Iaquinto, 2004**). Chronic gastric infection with H. pylori causes inflammation and several gastric pathologies, including gastric ulcers and gastric cancer (**Lochhead and El-Omar, 2007**).

Compelling evidence from epidemiological, histopathological and animal studies has linked H.pylori infection to the subsequent development of gastric cancer (**Uemura** *et al.*, **2001**).

Despite the established relationship between H. pylori and gastric pathologies, the association between H. pylori and colorectal cancer is much less clear. Epidemiologic studies have used serology, PCR methods, C-urea breath tests, and circulating gastrin levels to examine colorectal neoplasia in relation to H. pylori infection and have produced conflicting results (**Andrea** *et al.*, **2008**).

Infection of colorectal tissue with H. pylori may not be directly responsible for an increased risk of colorectal cancer but rather the byproducts of a gastric H. pylori infection (Hartwich et al., 2001). One theory stems from the fact that gastric H. pylori infection increases serum

levels of gastrin leading to hypergastrinemia (**Mulholland** *et al.*, **1993**). Because hypergastrinemia is hypothesized to have proliferative effects on intestinal mucosa (**Sobhani** *et al.*, **1993**). A positive association has been found between hypergastrinemia and colorectal neoplasia (**Georgopoulos** *et al.*, **2006**).

Carcinogenesis via H. pylori involves inflammation, as well as deregulation of the cell cycle via the H. pylori protein, cytotoxin-associated gene A (CagA), which binds and activates SHP2 (a human phosphatase that can act as an oncoprotein) resulting in cell growth and motility (Lochhead and El-Omar, 2007).

Associations between neoplastic colorectal lesions (adenomas and carcinomas) and H.pylori were based on indirect evidence such as studies correlating these lesions with increased CagA+ levels (Hartwich *et al.*, 2001) or increased gastrin (Konturek *et al.*, 2002) or, direct correlation with H.pylori seropositivity (Fujimori *et al.*, 2005). Other studies have failed to demonstrate this association based on seropositivity (Limburg *et al.*, 2002).

Enterohepatic helicobacters are non H. pylori helicobacters which naturally colonise the intestinal crypts and are often associated with diarrhea, can cause bacteraemia and systemic disease including colonisation of the biliary tract and induction of cholecystitis and hepatitis (and in some cases hepatic cancer). Immunocompromised hosts are particularly susceptible to these microorganisms (Solnick and Schauer, 2001).

It is possible that *Helicobacter* species are under recognized causes of infective diarrhea in humans. Helicobacters cultured from human diarrheal samples include *H cinaedi*, *H canis*, *H pullorum*, *Helicobacter fennelliae*, *Helicobacter Canadensis*, *Helicobacter rappini* and other unclassified but related organisms (Fox, 2002).