Biochemical Studies of Ghrelin and Leptin Levels in Obese Conditions with Body Mass Index and Insulin Resistance

Presented by

Hamed Mohamed Hamed Khalil Abou Ismael

A Thesis Submitted to Faculty of Science

In Partial Fulfillment of the Requirements for the Degree of Master of Science (Biochemistry)

Chemistry Department Faculty of Science Cairo University

(2011)

APROVAL SHEET FOR SUBMISSION

Title of the M.Sc thesis: Biochemical studies of ghrelin and leptin levels in obese individuals with body mass index and insulin resistance.

Name of candidate: Hamed Mohamed Hamed Khalil Abou Ismael

The thesis has been approved for submission by the supervision:

1- Prof. Dr. Mohamed Osman Ibrahem Refaei Prof. of Biochemistry, Lab. of Biomedical Analysis Faculty of Science- Cairo University.

Signature:

2- Ass. Prof. Dr. Manal Mohamed Kamal Ass. Prof. of Clinical Pathology, Faculty of Medicine Cairo University.

Signature:

Prof. Dr Mohamed Ahmed Bdawi Chairman of Chemistry Department Faculty of Science- Cairo University

Cairo University Faculty of Science

To Whom It May Concern

This is to certify that:

Has attended and passed successfully the following postgraduate courses as a partial fulfillment of the requirements for the degree of master of science:

1. Enzymology	9. Immunology	17. Tissue Culture
2. Biochemistry I	10. Immunochemistry	18. Cytology
3. Biochemistry II	11. Spectroscopy	19. Radiobiology
4. Biological Analysis	12. Stereochemistry	20. Biological Statistics
5. Molecular Biology	13. Bioinorganic Complexes	21.Jermany Language
6. Body fluids	14. Physiology I	22. Toxicology
7. Microbiology	15. Physiology II	
8. Proteomics	16. Industrial Microbiology	

This certificate is issued at his own request.

Date of Birth:

Place of Birth: Egypt

Acknowledgement

I wish to express my deepest gratitude and my great respect to Prof. Dr. Mohamed O. I. Refaie, Professor of Biochemistry, Lab. of Biochemical Analysis, Faculty of Science, Cairo University. I am grateful to him que women like to express my deepest thanks and appreciation for his unlimited assistance, continuous support and meticulous supervision throughout the work, I am grateful to his pure science and dynamic way of teaching which impressed and benefited me very much.

I also wish to express my thanks to Ass. Prof. Dr. Manal Mohamed Kamal Ass. Prof. of Clinical Pathology, Faculty of Medicine, Cairo University for her support in this work.

I would like also to express my deepest thanks to my family for their patience which encouraged me through this study.

ABSTRACT

Name: Hamed Mohamed Hamed Khalil Abou Ismael

Title of Thesis: Biochemical studies of ghrelin and leptin levels in obese individuals

relationship with body mass index and insulin resistance

Degree: M.Sc. of Science in Biochemistry, Chemistry Department, Faculty of Science,

Cairo University, 2010.

Abstract:

This study aimed to investigate the levels of some common or xigenic agents and obesity.

We focused on some human hormones such as ghrelin, leptin and insulin resistance in

serum of over-weight, obese and normal weight Egyptian females.

Results: The level of serum human ghrelin hormone was significant decreased in both

over-weight and obese individuals as compared with normal weight individuals. Regarding

to the level of serum leptin hormone was a highly significant raise in obese individuals

while in over-weight individuals we found a slightly decreased as compared with normal

weight individuals. Our laboratory data revealed a significant elevation of the level insulin

resistance in obese group, but in case of over-weight group a slightly decreased was

obtained.

Conclusion: Evaluation of the levels of serum ghrelin, leptin and insulin resistance are

good markers of the amount of body fat in obese and over-weight individuals.

Key words

: Ghrelin, Leptin, Insulin resistance, Obesity.

Supervisors: Prof. Dr. Mohamed Osman Ibrahim Refaei

Ass.Prof.Dr. Manal Mohamed Kamal

Prof.Dr.Mohamed Ahmed Badawi **Chairman of Chemistry Department.**

Faculty of Science, Cairo University

CONTENTS

<u>CONTRACTO</u>	<u>Page</u>
CHAPTER I: INTRODUCTION & AIM OF THE WORK:	
I.1. Definition of obesity	1
I.2. Classification of overweight and obesity	1
I.3. Epidemiology of obesity	2
I.4. The genetics of obesity in humans	4
I.5. Etiology of human obesity	5
I.6. Pathophysiology of obesity	8
I.7. Obesity and the brain	9
I.8. Function of the adipose tissue	18
I.9. Pharmacological therapy of obesity	21
I.10. Aim of the work	24
CHAPTER II: REVIEW OF LITERATURE DATA:	
II.1. Hormone definition and synthesis	25
II.2. Structure and cloning of ghrelin hormone	27
II.3. Function of ghrelin hormone	29
II.4. Ghrelin the hunger hormone	30
II.5. Clinical significance of ghrelin hormone	32
II.6. Methods of determination of human ghrelin hormone	34
II.7. Structure and cloning of leptin hormone	34
II.8. Function of leptin hormone	36
II.9. Leptin hormone and obesity	38
II.10. Leptin signaling	39
II.11. Leptin and sleep	42
II.12. Clinical significance of leptin hormone	43
II.13. Methods of determination of human leptin hormone	44
II.14. Leptin as obesity treatment	44
II.15. Structure and cloning of insulin hormone	45
II.16. Glucose homeostasis	48
II.17. Actions of insulin	49
II.18. Insulin affects lipid metabolism	50
II.19. Insulin promotes VLDL synthesis	51
II.20. Clinical significance of insulin	52
CHAPTER III: SUBJECTS MATERIALS & METHODS:	

III.1. Subject Selection	53
III.2. Biochemical examination of the investigated parameters	54
III.3.investigated parameters	55
III.3.1.quantitative measurement of human Ghrelin hormone	55
III.3.2.quantitative measurement of human leptin hormone	60
III.3.3.quantitative measurement of insulin resistance	66
III.3.4. Determination of blood urea concentration principle	72
III.3.5. Determination of serum creatinine	72
III.3.6. Determination of serum HDL cholesterol	73
III.3.7. Determination of serum LDL cholesterol	75
III.3.8. Determination of serum triglycerides (TG)	76
III.3.9. Determination of cholesterol concentration	76
III.3.10.Determination of serum glucose concentration	77
III.3.11. Statistical analysis	78
CHAPTER IV: EXPERIMENTAL RESULTS:	
IV.1. The Experimental results of sera human ghrelin hormone in different groups.	81
IV.2. The Experimental results of sera human leptin hormone in different groups	83
IV.3. The Experimental results of insulin resistance levels in different groups	85
IV.4.The Experimental results of insulin levels in different groups	87
IV.5. The Experimental results of sera HDL cholesterol in different groups	89
IV.6. The Experimental results of sera LDL cholesterol in different groups	91
IV.7. The Experimental results of sera triglycerides (TG) in different groups	93
IV.8. The Experimental results of sera cholesterol in different groups	95
IV.9. The Experimental results of sera glucose concentration in different groups	97
IV.10. The Experimental results of blood urea concentration in different groups	99
IV.11.The Experimental results of sera creatinine concentration in different groups	101
IV.11. Correlation Analysis	
IV.12.1.Correlation between Ghrelin & other parameters in the normal weight	
group	103
IV.12.2.Correlation between Ghrelin & other parameters in the over-weight group.	107
IV.12.3.Correlation between Ghrelin & other parameters in the obese group	112
CHAPTER V: DISCUSSION:	
V.1. Discussion of serum human ghrelin hormone assay	112
V.2. Discussion of serum human leptin hormone assay	118
V.3. Discussion of serum insulinresistance assay	123

V.4. Discussion of correlation between the tested hormones	130
V.5. Discussion of serum HDL cholesterol	134
V.6. Discussion of serum LDL cholesterol.	137
V.7. Discussion of serum Triglycerides (TG)	139
V.8. Discussion of cholesterol concentration	141
V.9. Discussion of serum glucose concentration	142
V.10.Discussion of kidney function (blood urea & creatinine)	143
CHAPTER VI: ENGLISH SUMMARY AND CONCLUSION	145
CHAPTER VII: REFERENCES	147
ARABIC SUMMARY	155

LIST OF ABBREVIATIONS

BMI : Body Mass Index

CNS : central nervous system

PVN : paraventricular nucleus

SNS : sympathetic nervous system

FFAs : free fatty acids

NIDDM : Non-Insulin Dependent Diabetes Mellitus

TG : triglycerides

WHO :World Health Organization

GD : gallstone disease

VMH : ventromedial hypothalamus

PVN : Paraventricular nucleus

MC4-R : melanocortin 4 receptor

SNS :Sympathetic nervous system

GH : growth hormone

GHS-R : growth hormone secretagogue-receptor

GHRL : **Ghrelin hormone**

PRL :Prolactine hormone

ACTH :Adreno corticotropic hormone

PVN : paraventricular nuclei

GTT :Glucose tolerance tests

HIV : human immunodeficiency virus

ELISA : enzymelinked immunosorbent assay

G-CSF : granulocyte colony-stimulating factor

LIF : leukocyte inhibitory factor

IL-6 : interleukin-6

hGH : human growth hormone

LEPR : human leptin receptor

OB-R : OB receptor

NPY : Neuropeptide Y

ob : obesity gene

icv : intra-cerebro-ventricularly

FFA : free fatty acid

HDL-C : HDL-cholesterol

LDL-C : LDL-cholesterol

HDL : High-density lipoprotein

LDL : Low- density lipoprotein

VLDL : very low density lipoprotein

POMC :Proopiomelanocortin

IDL : intermediate density lipoproteins

CVD : cardiovascular disease

SA-HRP : streptavidin-horseradish peroxidase

TMB : tetramethylbenzidine

HCL : hydrogen chloride

APS : Acetate plate sealer

IR : Insulin resistance

HOMA-IR : homeostasis model assessment

MAbs : monoclonal antibodies

E2 : estradiol

LIST OF TABLES

Table No.		<u>Page</u>
Table 1:	Classification of weight status in adults according to Body Mass Index	
	(BMI) (WHO, 1998)	1
Table 2:	Potential obesity treatments in development	19
Table 3:	Individual data of sera ghrelin hormone in different groups	66
Table 4:	Statistical analysis of ghrelin hormone levels in different groups	67
Table 5:	Individual data of sera leptin hormone in different groups	68
Table 6:	Statistical analysis of leptin hormone levels in different groups	69
Table 7:	Individual data of insulin resistance in different groups	70
Table 8:	Statistical analysis of insulin resistance levels in different groups	71
Table 9:	Individual data of sera insulin hormone in different groups	72
Table 10:	Statistical analysis of insulin levels in different groups	73
Table 11:	Individual data of sera HDL cholesterol in different groups	74
Table 12:	Statistical analysis of sera HDL cholesterol levels in different	75
Table 13:	Individual data of sera LDL cholesterol in different groups	76
Table 14:	Statistical analysis of LDL cholesterol levels in different groups	77
Table15:	Individual data of sera triglycerides in different groups	78
Table 16:	Statistical analysis of triglycerides levels in different groups	79
Table 17:	Individual data of sera cholesterol in different groups	80
Table 18:	Statistical analysis of cholesterol levels in different groups	81
Table 19:	Individual data of sera glucose in different groups	82
Table 20:	Statistical analysis of glucose concentration in different groups	83
Table 21:	Individual data of blood urea concentration in different groups	84
Table 22:	Statistical analysis of blood urea concentration in different groups	85
Table 23:	Individual data of creatinine concentration in different groups	86
Table 24:	Statistical analysis of creatinine concentration in different groups	85
Table 25:	Correlation between Ghrelin & other parameters in the normal	86
	weight group	
Table (26):	Correlation between Ghrelin & other parameters in the over-weight	92
	group	96
Table (27):		

LIST OF FIGURES

<u>Figure No.</u>		<u>Page</u>
Figure 1:	The global obesity problem	2
Figure 2:	Genetic-linkage map for obesity	3
Figure 3:	Ideogram of human chromosome 20q	54
Figure 4:	Schematic representation of the factors influencing the	
	development of obesity	6
Figure 5:	Physiological regulation of energy balance	8
Figure 6:	Obesity and the brain	9
Figure 7:	The hypothalamic overseer functions	9
Figure 8:	Human endocrine glands	10
Figure 9:	Adipocytes at the crossroads of energy homeostasis	11
Figure 10:	Diagram of the hypothalamus, pituitary gland, pituitary stalk	13
	(control centers)	
Figure 11:	The general circuitry underlying the regulation of body weight	15
Figure 12:	Function of adipose tissue	16
Figure 13:	Humoral signals	18
Figure 14:	Protein hormone synthesis	23
Figure 15:	Structure of ghrelin hormone	24
Figure 16:	Ghrelin (GHRL) region in detail and location	25
Figure 17:	Ghrelin (GHRL) gene in genomic location	25
Figure 18:	Function of ghrelin hormone	26
Figure 19:	Ghrelin stimulates appetite	28
Figure 20:	Structure of leptin	30
Figure 21:	Gene (LEPR) human leptin receptor precursor (LEP-R) (OB	31
	receptor) (OB-R)) region in detail and location	
Figure 22:	Leptin gene in genomic location	32
Figure 23:	Action of leptin on the hypothalamus and peripheral organs	33
Figure 24:	Hypothalamic leptin signal transduction	35
Figure 25:	Interactions of leptin and ghrelin hormones	35
Figure 26:	Cross-talk between insulin and leptin signaling in the	37
	hypothalamus	
Figure 27:	Composition of pro-insulin and mature insulin	40
Figure 28:	Insulin genomic in detail and location	41

Figure 29:	Homeostasis diagram of insulin and glucagon in controlling blood	42
	glucose	
Figure 30:	Actions of insulin	43
Figure 31:	Affect of insulin on liver and adipose tissue	44
Figure 32:	Lipid to protein ratios for lipoproteins. Lipids comprise TGs,	45
	cholesterol, and phospholipids	
Figure 33:	Standard curve of human Ghrelin hormone	51
Figure 34:	Standard curve of leptin hormone	55
Figure 35:	Mean ghrelin level in different tested groups	67
Figure 36:	Mean leptin level in different tested groups	69
Figure 37:	Mean Insulin resistance level in different tested groups	71
Figure 38:	Mean Insulin level in the three groups	73
Figure 39:	Mean HDL cholesterol level in different tested groups	75
Figure 40:	Mean LDL cholesterol level in different tested groups	77
Figure 41:	Mean triglycerides (TG) level in different tested groups	79
Figure 42:	Mean cholesterol level in different tested groups	81
Figure 43:	Mean of fasting blood sugar in different tested groups	83
Figure 44:	Mean urea level in different tested groups	85
Figure 45:	Mean creatinine concentration in different tested groups	87
Figure 46:	Correlation between ghrelin level and leptin level in normal weight	89
	group	
Figure 47:	Correlation between ghrelin level and BMI in normal weight	89
	group	
Figure 48:	Correlation between Ghrelin level and HOMA in normal weight	90
	group	
Figure 49:	Correlation between leptin level and BMI in normal weight	90
	group	
Figure 50:	Correlation between leptin level and insulin level in normal weight	91
	group	
Figure 51:	Correlation between leptin level and HOMA in normal weight	91
	group	
Figure 52:	Correlation between ghrelin level and leptin level in over-weight	93
	group	
Figure 53:	Correlation between ghrelin level and insulin level in over-weight	93
	group	

Figure 54:	Correlation between ghrelin level and BMI in over-weight group	94
Figure 55:	Correlation between ghrelin level and HOMA in over-weight	94
	group	
Figure 56:	Correlation between leptin level and BMI in over-weight group	95
Figure 57:	Correlation between leptin level and insulin level in over-weight	95
	group	
Figure 58:	Correlation between leptin level and HOMA in over-weight group.	96
Figure 59:	Correlation between ghrelin level and leptin level in obese group	97
Figure 60:	Correlation between ghrelin level and insulin level in obese group	98
Figure 61:	Correlation between Ghrelin level and BMI in obese group	98
Figure 62:	Correlation between Ghrelin level and HOMA in obese group	99
Figure 63:	Correlation between leptin level and insulin level in obese group	99
Figure 64:	Correlation between leptin level and BMI in obese group	100
Figure 65:	Correlation between leptin level and HOMA in obese group	100

I.1.Definition of Obesity

Obesity is often defined simply as a condition of abnormal or excessive fat accumulation in adipose tissue, to the extent that health may be impaired (WHO, Obesity, 2000). Obesity is defined medically as a state of increased body weight, more specifically adipose tissue, of sufficient magnitude to produce adverse health consequences (Spiegelman and Flier, 2001). However, obese individuals differ not only according to the degree of excess fat, which they store, but also in the regional distribution of the fat within the body. Indeed, excess abdominal fat is as great a risk factor for disease as is excess body fat per se WHO (World Health Organization, 1998). Human obesity is associated with many significant comorbidit, including cardiovascular disease, diabetes mellitus, hypertension, stroke, osteoarthritis, and some cancers, gallstone disease (GD), etc. (Mantzoros, 1999).

I.2. Classification of Overweight and Obesity

One of the most commonly used indices of relative weight is the Body Mass Index (BMI), which is defined as body weight in kilogram divided by height, in meters squared. It was not originally intended as an index of obesity but is now commonly employed as such in epidemiological studies, to predict obesity-related morbidity and mortality in adults. A BMI of 30 kg/m 2 is considered the threshold of obesity. BMI however does not distinguish between weight associated with muscle and weight associated with fat.

BMI can be considered to provide the most useful, albeit crude, population-level measure of obesity. The classification of overweight and obesity in adults as proposed by WHO (World Health Organization, 1998) (Table1).

(Table 1): Classification of weight status in adults according to Body Mass Index (BMI) (WHO, 1998)

Classification	BMI (kg/m2)	Risk of co-morbidities
Underweight	< 18.5	Low (but risk of other clinical problems increased Average
Normal range	18.5 – 24.9	Treinge
Overweight:	≥ 25	Increased
Pre-obese	$\frac{-}{25}$ – 29.9	Moderate
Obese class I	30.0 - 34.9	Severe
Obese class II	35.0 - 39.9	Very severe
Obese class III	\geq 40.0	

١