Effect of Statin therapy on Erythropoietin Response in Prevelant Haemodialysis Patients

Thesis

By

Samer Magdy Hassan Aly M.B.B.Ch

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

Supervised by

Dr. Khaled Hussien Abou Seif

Professor of Internal Medicine and Nephrology Faculty of Medicine Ain Shams University

Dr. Aber Halim Baki

Lecturer of Internal Medicine and nephrology Faculty of Medicine Ain Shams University

Dr. Ahmed Shaaban Serag El Deen

Lecturer of Internal Medicine and Nephrology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2012

First and foremost, thanks to Allah for giving me the will and the patience to finish this work.

First and foremost, I'd like to thank Allah, the most kind and the most merciful.

I would like to express my sincere gratitude to **Prof. Dr. Khaled Hussien Abo Seif** Professor of Internal Medicine and nephrology Faculty of Medicine, Ain Shams University, for his kind supervision and guidance. It's great honor to work under his supervision.

My heartiest thanks to **Dr. Aber Halimbaki** Lecturer of Internal Medicine and nephrology, Faculty of Medicine, Ain Shams University, whose encouragement, expert guidance and support from the initial to the final level of this work.

My deepest gratitude and my sincere thanks to **Dr. Ahmed**Shaaban Serag El Deen Lecturer of Internal Medicine and nephrology Faculty of Medicine, Ain Shams University, for his kind supervision and support to end this work.

I would like to thank all the Staff Members of internal medicine and nephrology department inmaadimilitirian hospital, and all those who helped me and facilitated the whole procedures to accomplish this work.

Finally, an honorable mention goes to **my family** for their support to complete this project.

Samer Magdy Hassan Aly

Contents

List of Abbreviations	I
List of Tables	III
List of Figures	V
Introduction and Aim of the Work	1
Review of literature	4
* Chapter 1: Anemia in CKD and Role of Erythropoietin	. 4
* Chapter 2: Dyslipidemia of CKD and Role of Statin	32
Subjects and Methods	71
Results	81
Discussion	95
Summary	106
Conclusion	109
References	110
Arabic Summary	

List of Abbreviations

ACAT : Acyl-CoA cholesterol acyltransferase
ACE-I : Angiotensin converting enzyme inhibitors
AIDS : Acquired Immunodeficiency Syndrome

AIHA : Autoimmune hemolytic anemi Apolipoprotein

APOA : A Apolipoprotein A APOB : A Apolipoprotein B

ARBs : Angiotensin receptor blockers
BFU-E : burst forming units erythroid
CHr : Content of Hb in reticulocytes
CFU-E : Colony-forming units-erythroid

CKD : Chronic kidney disease
 CRF : Chronic renal failure
 CRP : C-reactive protein
 CVD : Cardiovascular disease
 CYP3A4 : Cytochrome P450 3A4

DPO : Darbepoetinalfa

eNOS : Endothelial nitric oxide synthase

EPO : Erythropoietin

ESAs : erythropoiesis stimulating rate ESR : Erythrocyte sedimentation rate

ESRD : End stage tenal disease
FPP : Farnesyl pyrophosphate
GFR : Glomerular filtration rate
GATA2 : GATA binding protein 2

GGPP : Geranylgeranyl pyrophosphate GTPases : Guanosinetriphosphatases

Hb : Hemoglobin Hct : Hematocrite HD : Hemodialysis

HDL : High-density lipoprotein

HF : Heart failure

HMG-CoA: 3-Hydroxyl-3-methylglutaryl coenzyme A

ICAM-1 : Intercellular Adhesion Molecule 1

IL : Iinterleukins

LCAT : Lecithin-cholesterol acyltransferase

LDL : Low-density lipoprotein LMW : Low molecular weight

LVH : left ventricular hypertrophy
 MCP-1 : Monocyte chemotactic protein-1
 NKF : National kidney foundation
 NFκB : Nuclear factor kappa B
 PTH : Parathyroid hormone

QOL : Quality of life

RAS : Renin angiotensin system

RHUPO : Recombinant human erythropoietin

TIBC : Total iron binding capacity

TGS : Ttriglyserides

TSAT : Transferrin saturation

TGF β : Transforming growth factor β

TNF β : Tumor necrosis factor β

SLE : Systemic lupus erythromatosis
VCAM-1 : vascular cell adhesion molecule 1
VLDL : Very Low-density lipoprotein

List of tables

Table	Title	Page
1	Causes of anemia in chronic renal failure patients	7
2	Factors Associated with an Increase in CRP in Patients on Dialysis	10
3	Impact of Anemia in CKD	13
4	Potential causes of erythropoietin hyporesponsiveness	23
5	Common features of serum lipid/lipoprotein profile in predialysis CKD patients with or without nephrotic proteinuria and in ESRD patients treated with chronic hemodialysis or peritoneal dialysis	37
6	Common features of serum lipid/lipoprotein profile in predialysis CKD patients with or without nephrotic proteinuria and in ESRD patients treated with chronic hemodialysis or peritoneal dialysis	42
7	Comparison between the mean values of hematological markers before and after 3 months in group1 (statin users)	82
8	Comparison between mean values of biochemical markers before and after 3 months in group 1(statin users)	83
9	Comparison between mean values of the hematological markers before and after 3 months in non statin group 2	87
10	Comparison between mean values of biochemical markers before and after 3 months in non statin group	88

List of tables (Cont.)

Table	Title	Page
11	Comparison of mean values of changes between both studied groups before and	89
	after 3 months occurred in	
	hematological markers	
12	Comparison of mean values of changes	90
	between both studied groups occurred in	
	biochemical markers	
13	Percentage of significant changes occurred in hematological and	92
	biochemical markers of statin group	
	after the 3 months	
14	Correlation between EPO dose and	93
	hematological markers base on the	
	change occurred in statin group	
15	Correlation between EPO dose	94
	requirements change and biochemical	
	markers based on the change occurred in	
	statin group	

List of Figures

Dist of Figures					
Fig.	Title	Page			
1	Mechanisms in anemia leading to	15			
	myocardial damage in chronic kidney				
	disease				
2	Anemia Management in CKD	28			
3	Major classes of lipoproteins with	34			
	predominant= apoprotein components.				
	Small, dense, low-density				
	lipoprotein(LDL) and lipoprotein(a)				
	[Lp(a)] may be more atherogenic				
4	The possible mechanisms of uremic	43			
	dyslipidemia				
5	Essential steps of cholesterol	47			
	biosynthesis				
6	Mean values of EPO dose, serum iron	84			
	and transferring saturation measured				
	before and after 3 months in group1				
7	Mean values of EPO dose, serum iron	85			
	and transferring saturation measured				
	before and after 3 months in group1				
8	Mean values of LDL, HDL, cholesterol	86			
	and triglycerides measured before and				
	after 3 months in statin HD patients				
9	Mean values of change in hemoglobulin,	91			
	albumin, transferrin saturation and CRP				
	measured before and after 3 months in				
	both studied groups				
10	Mean values of change in, LDL,	91			
	cholesterol, triglycerides and HDL				
	measured before and after 3 months in				
	both studied groups				
11	Correlation between EPO change and	95			
	Hb change in statin group				

Introduction

Anaemia of end-stage renal disease patients has been effectively treated with erythropoietin (EPO). EPO therapy reduced the need for blood transfusions and improved the quality of life in maintenance haemodialysis (HD) patients. (NFK 2001), EPO responsiveness in patients with chronic renal failure depends on the dose, the route and the frequency of administration (Eschbachjw 2002).

Factors that contribute to EPO hyporesponsiveness include iron deficiency, infections, inadequate dialysis, chronic blood loss, hyperparathyroidism, aluminum toxicity, malnutrition, vitamin deficiency, malignancy and others (*Drueke T 2002*).

Drugs (including angiotensin converting enzyme inhibitors or angiotensin II receptor blockers)have been identified as contributory factors to EPO resistance(raoDS,et al 2003). Inflammation has also been reported as a factor contributing to EPO hyporesponsiveness (Gunell G, et al. 1999).

C-reactive protein (CRP), an acute phase protein, is the most well-investigated representative marker of inflammation in the general population and in chronic kidney disease (CKD) patients (*Yeun JY*, *et al. 2000*) CRP predicts the risk of cardiovascular evevts and may play arole in the atherosclerotic process in general population (*Koenig W Loelh, Baumert 2004*). CRP also predict mortality in HD patients, and high

Introduction and Aim of The Study

levels of CRP have been associated with resistance to EPO therapy in HD patients, possibly by indicating the presence of some micro inflammation (*Locatelli F, et al. 2006*).

The prevalence of dyslipidemia in end-stage renal disease is greater than that in the general population (*Kasiske BL*, et al. 2002). Lipid abnormalities may result in atherosclerotic vascular disease and statin therapy could lower the risk of cardiovascular events by reducing plasma cholesterol and triglycerides both in general population and HD patients (*Seliger SL*, et al 2002). Moreover, statins seem to exert other pleiotropic effects on inflammation, the immune system and thrombosis (*Davignon J*, et al. 2004).

Statins may reduce CRP levels in the general population patients. (*Vernaglione Let al.2004*). It has also been suggested that statins by reducing CRP levels have a positive impact on EPO responsiveness (*Dornbrook-Lavender KA*, *et al 2005*).

Aim of the Study

Evaluate the effect of statin therapy on Erythropoietin responsiveness in prevalent Haemodialysis patients.

Chapter I

Anemia in CKD and Role of Erythropoietin

Anemia of CKD is one of the first signs of kidney dysfunction, yet it often goes undetected because of its insidious onset. Anemia develops gradually as kidney function declines and the GFR drops to 70 ml/min in male patients and 50 ml/min in females. Epidemiologic data indicate that two-thirds of patients in the early stages of kidney failure are also anemic, with a hemoglobin level of less than 11 g/dl, yet only one-third of these patients have ever received erythropoietin stimulating agents (ESAs) to treat their anemia (*Taliercio*, 2010).

Definition of Anemia:-

Anemia is defined as a decrease in the number of circulating red blood cells (RBCs), a reduction in the amount of Hb in the RBCs, or a combination of both. Although there are natural variations in laboratory values, and Hb varies by age and gender, the average normal ranges of Hb in adult men and women are as follows: 14 to 18 g/dl in males, and 12 to 16 g/dl in females (*Basile*, 2007).

Anemia in CKD, as defined by The National Kidney Foundation (NKF), is hemoglobin (Hb) concentration < 12 g/dl for women and < 13.5 g/dl for men. Conversely, the European Best Practices Guidelines for the Management of

Review of Literature

Anemia in Patients with Chronic Renal Failure defines anemia according to age and sex. Anemia is defined as an Hb concentration of < 11.5 g/dl in women, < 13.5 g/dl in men ≤ 70 years of age, and < 12 g/dl in men > 70 years of age (*O'Mara*, 2008).

Prevalence of Anemia:-

Anemia is very common in patients with chronic kidney disease and probably causes many of its symptoms. Physicians should start thinking about anemia when their patient's glomerular filtration rate (GFR) declines to 60 mL/minute/1.73 m² or less. In the third National Health and Nutrition Examination Survey, the prevalence of anemia in stage 3 chronic kidney disease (ie, a GFR of 30 to 59 ml/minute/1.73 m²) was 5.2%, rising to 44.1% in stage 4, and becoming almost universal in stage 5. African Americans and patients with diabetes have even higher rates of anemia at each stage of kidney disease (*Nurko*, 2006).

How kidney failure leads to anemia?

Insufficient erythropoietin production is the primary cause of anemia in patients with CKD. Various secondary causes can contribute to anemia, including a deficiency of iron, folate, or vitamin B12, gastrointestinal bleeding, severe hyperparathyroidism, inflammatory conditions and shortened red blood cell survival due to uremia. Deficiencies of folate and vitamin B12 cause macrocytic anemia. Elevated parathyroid hormone concentrations and acute and chronic