Prediction of Intra-amniotic Infection by Maternal Plasma Procalcitonin Level as a Marker in Cases of Preterm Premature Rupture of Membranes

Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

By

Mohamed Ahmad Nour El-Din Khattab Eisa

Bachelor Medicine and Surgery 2012 Ain Shams University Obstetrics and Gynecology Resident Suez Health Care Insurance Hospital

Supervised by

Prof. Yasser Mohamed Abou Talib

Professor of Obstetrics and Gynecology Ain Shams University-Faculty of Medicine

Dr. Mohamed Abd El Hameed Abd El Hafeez

Assistant Professor of Obstetrics and Gynecology Ain Shams University-Faculty of Medicine

> Faculty of Medicine Ain Shams University 2018

Above and before all, I would like to kneel thank to **Allah** the almighty, the most Merciful for the support, guidance and mercy He grants me throughout my life.

I want to express my deepest gratitude to **Prof.**Yasser Mohamed Abou Talib, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his positive attitude and support.

I want to express my grateful thanks to **Dr.**Mohamed Abd El Hameed Abd El Hafeez, Assistant

Professor of Obstetrics and Gynecology, Faculty of Medicine,

Ain Shams University, for his positive attitude toward my

work.

I can't find the appropriate words to express how much I'm grateful to my Family, there is nothing I can offer to them could be comparable to anything they had offered to me.

Mohamed Nour El-Din

CONTENTS

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Protocol	
Introduction	1
Aim of the Work	4
- Chapter (1): Preterm Premature Rupture	of
Membranes	5
- Chapter (2): Chorioamnionitis	12
- Chapter (3): Markers of PPROM	30
- Chapter (4): Markers of Chorioamnionitis	41
- Chapter (5): Procalcitonin	45
Patients and Methods	61
Results	73
Discussion	103
Summary	112
Conclusion	114
Recommendations	115
References	116
Arabic Summary	١١

List of Abbreviations

Abb.	Full term
ART	Assisted reproductive technique
COCP	Combined oral contraceptive pills
DVT	Deep vein thrombosis
ERs	Estrogen receptors
FSH	Follicle-stimulating hormone
GnRH	Gonadotropin-releasing hormone
IUD	Intrauterine device
LH	Luteinizing hormone
LNG	Levnonorgestrel
LNG -IUD	Levonogestrel releasing intrauterine device
LNG-IUS	Levonorgestrel intrauterine system
OTR	Oxytocin receptor
PCOS	Polycystic ovary syndrome
PE	Pulmonary embolism
PID	Pelvic inflammatory disease
PROM	Premature rupture of membrane
VPR	Vasopressin receptors

List of Tables

Table No.	Title Page	No.
Table (1):	Selected risk factors and their relative	14
	risks for chorioamnionitis	
Table (2):	Clinical and amniotic fluid laboratory	19
	diagnosis of chorioamnionitis	
Table (3):	Difference between groups regarding	73
	initial characteristics	
Table (4):	Gestational age at PPROM and latency	75
	interval in group I	
Table (5):	Difference between groups regarding	77
	TLC, serum CRP and serum	
	procalcitonin levels	
Table (6):	Difference between groups regarding	80
	gestational age at delivery	
Table (7):	Difference between groups regarding	82
	diagnosis of histologic	
	chorioamnionitis	
Table (8):	Correlation between serum calcitonin	84
	and measured variables in women of	
	group I	
Table (9):	Validity of association between	87
	histologic chorioamnionitis and each of	
	serum calcitonin, TLC and serum CRP	
	in women of group I	
Table (10):	Difference between groups regarding	92
	neonatal outcome	

List of Tables (Cont...)

Table No.	Title Pa	ge No.
Table (11):	Correlation between serum calcitonin and neonatal outcome in women of group I	96
Table (12):	Validity of association between histologic chorioamnionitis and each of serum calcitonin, TLC and serum CRP in women of group I	101 of

List of Figures

Figure No.	Title	Page No.
Fig. (1):	Routes of infection that causes chorioamnionitis	15
Fig. (2):	Acute exudative inflammation present with microabscess formation in decidu	
Fig. (3):	Box-and-whisker plot chart showing difference between groups regarding a	74 ge
Fig. (4):	Box-and-whisker plot chart showing difference between groups regarding parity	74
Fig. (5):	Box-and-whisker plot chart showing gestational age at PPROM in group I	76
Fig. (6):	Box-and-whisker plot chart showing latency interval in group I	76
Fig. (7):	Box-and-whisker plot chart showing difference between groups regarding T	78 LC
Fig. (8):	Box-and-whisker plot chart showing difference between groups regarding serum CRP	78
Fig. (9):	Box-and-Whisker plot chart showing difference between groups regarding serum procalcitonin levels	79
Fig. (10):	Box-and-whisker plot chart showing difference between groups regarding gestational age at delivery	81
Fig. (11):	Bar-chart showing difference between groups regarding rates of histologic chorioamnionitis	83

List of Figures (Cont...)

Figure No	o. Title Pa	ge No.
Fig. (12):	Scatter-plot showing correlation between serum calcitonin and TLC in women of group I	n 85
Fig. (13):	Scatter-plot showing correlation between serum calcitonin and serum CRP in women of group I	n 85
Fig. (14):	ROC curves for association between histologic chorioamnionitis and each of serum calcitonin, TLC and serum CRP in women of group I	86
Fig. (15):	ROC curves for association between delivery < 34 weeks of gestation and each of serum calcitonin, TLC and serum CRP in women of group I	88 n
Fig. (16):	ROC curves for association between latency interval ≤ 1 week and each of serum calcitonin, TLC and serum CRP in women of group I	89
Fig. (17):	ROC curves for association between latency interval 1-3 week and each of serum calcitonin, TLC and serum CRP in women of group I	90
Fig. (18):	ROC curves for association between latency interval 1-3 week and each of serum calcitonin, TLC and serum CRP in women of group I	91

List of Figures (Cont...)

Figure No	o. Title	Page No.
Fig. (19):	Box-and-whisker plot chart showing difference between groups regarding birth weight	
Fig. (20):	Bar-chart showing difference between groups regarding rates of LBW	en 93
Fig. (21):	Box-and-whisker plot chart showing difference between groups regarding min Apgar score	
Fig. (22):	Bar-chart showing difference between groups regarding rates of 5-min Apg score < 7	
Fig. (23):	Bar-chart showing difference between groups regarding rates of NICU admit	
Fig. (24):	Scatter plot showing correlation between calcitonin and birth weight in women of group I	
Fig. (25):	Scatter plot showing correlation between calcitonin and 5-min Apgar so in women of group I	
Fig. (26):	Scatter plot showing correlation between calcitonin and neonatal serum in women of group I	
Fig. (27):	ROC curve for the association betwe serum calcitonin and NICU admissio women of group I	

List of Figures (Cont...)

Figure N	o. Title	Page No.
Fig. (28):	ROC curve for the association between	n 100
	serum calcitonin and LBW in women	of
	group I	
Fig. (29):	ROC curve for the association between	n 102
	serum calcitonin and 5-min Apgar sco	ore <
	7 in women of group I	

Prediction of Intra-amniotic Infection by Maternal Plasma Procalcitonin Level as a Marker in Cases of Preterm Premature Rupture of Membranes

Thesis

Submitted For Partial Fulfillment of Master Degree
In Obstetrics and Gynecology

By

Mohamed Ahmad Nour El-Din Khattab Eisa

Bachelor Medicine and Surgery 2012
Ain Shams University
Obstetrics and Gynecology resident
Suez Health Care Insurance Hospital

Supervised by

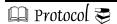
Dr. YASSER MOHAMED ABOU TALIB

Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Dr. MOHAMED ABD EL HAMEED ABD EL HAFEEZ

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2016

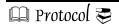

INTRODUCTION

The management of a patient who presents with preterm premature rupture of membranes (pPROM) is controversial and remains a challenging task in perinatal medicine. Clinical management of pPROM before 34 weeks of gestation is generally expectant, with controversies surrounding the use of amniocentesis, corticosteroids, and tocolytics (**Keirse et al., 1996**).

In women without signs of infection, the standard of care is hospitalization and bed rest until there is evidence of ascending infection or documentation of fetal lung maturity (Stringer et al., 2004).

Primary intra-amniotic subclinical infection is one of the main causes of pPROM and the early identification of such cases is necessary for choosing the proper mode of management (McCaul et al., 1997).

However, the number of methods of detecting subclinical infection is modest and limited. Several studies have demonstrated that fetal compromise can be suspected by measuring inflammatory mediators not only in amniotic fluid or in cervico-vaginal secretion, but also in the maternal blood (**Meisner et al., 2002**).

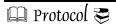

C-Reactive protein (CRP) and Total Leucocytic Count (TLC) were the most sensitive indicator of bacterial infection (sensitivity 84.8%), but it had a 37.9% false-positive rate (Al-Nawas et al., 1999).

Recently procalcitonin (PCT) was acknowledged as a specific marker of generalized bacterial infections (Shalev et al., 1995).

Procalcitonon (PCT) is a peptide precursor of the hormone calcitonin. It is composed of 116 amino acids and is produced by parafollicular cells (C cells) of the thyroid and by the neuroendocrine cells of the lung and the intestine (Murtha et al., 1996).

The level of procalcitonin in the blood stream of healthy individuals is below the limit of detection $(0.05 \mu g/L)$ of biochemical assays (**Keirse et al., 1996**).

The level of procalcitonin rises in a response to a pro-inflammatory stimulus, especially of bacterial origin. It does not rise significantly with viral or non-infectious inflammations. With the derangements that a severe infection with an associated systemic response brings, the blood levels of procalcitonin may rise to $100 \, \mu g/L$. In serum, procalcitonin has a half-life of 25 to 30 hours (**Monneret et al., 1999**).



The procalcitonin test is relatively new, but its utilization is increasing. Recent studies have shown that it has promise in diagnosis and prognosis of sepsis, bacteremia, pneumonia, meningitis and helping to evaluate the risk that a seriously ill person is developing a systemic bacterial infection (**Torb'e et al., 2004**).

It is hypothesized that the procalcitonin has a role to play in prediction of intra-amniotic subclinical infection (Von Minckwitz et al., 2000).

Maternal plasma PCT concentrations are of value in the diagnosis of pPROM cases suspected of subclinical intraamniotic infection (IAI) and in the prediction of the length of the pPROM-to-delivery interval (Ban'kowska et al., 2003).

Previous study showed that procalcitonin may have a role in predicting intra-amniotic infection in pregnant women with preterm premature rupture of membranes (Torb'e et al., 2004).

AIM OF THE WORK

Research hypothesis:

In women with pPROM, maternal serum procalcitonin may be elevated and could be used as a marker for prediction of intra-amniotic infection.

Research question:

In women with pPROM, Can maternal serum procalcitonin predict intra-amniotic infection accurately?

Aim of Study:

This study aims to assess the accuracy of maternal serum procalcitonin in prediction of intra-amniotic infection in women with pPROM.