Transoesophageal atrial pacing in management of arrhythmias among pediatric patients

Thesis

Submitted for partial fulfillment of the M.D. Degree in pediatrics

By

Hanan Zekri Khaled Zekri (M.B.B.Ch. & M.Sc.)

Supervised By

Prof. Dr. Faten Mohammed Abd El Aziz
Prof. of Pediatrics
Faculty of Medicine
Cairo University

Prof. Dr. Wael Mohammed Nabil Lotfy
Assist. Prof. of Pediatrics
Faculty of Medicine
Cairo University

Dr. Ranya Aly Hegazy Lecturer of Pediatrics Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University -2008-

ACKNOWLEDGEMENT

First, I would like to thank **ALLAH** the merciful and compassionate for making all this work possible and for granting me with the best teachers, family, friends and colleagues that many people would wish and dream of having.

I am honored to have **Prof. Dr., Faten Abd El-Aziz,** Prof. of Pediatrics, Faculty of Medicine, Cairo University, as a supervisor of this work. I am greatly indebted to her for her valuable supervision and kind guidance.

I am deeply thankful to **Prof. Dr., Wael Lotfy,** Assist. Prof. of Pediatrics, Faculty of Medicine, Cairo University, for his great help and effort to make this work possible. I was very honored to work with him.

Words can not express my deep gratitude and sincere appreciation to **Dr. Ranya Hegazy**, Lecturer of Pediatrics, Faculty of Medicine, Cairo University, who assisted me in most of the practical work. I am greatly grateful for her generous help, kind advice, and kind guidance.

Furthermore I would like to convey my special thanks to all my staff members, my colleagues and nursing staff.

To all those I say:

جزاكم الله خيرا

CONTENTS

	Page
ABBREVIATIONS	I
LIST OF TABLES	IV
LIST OF FIGURES	\mathbf{V}
INTRODUCTION	IX
AIM OF THE WORK	XI
ABSTRACT	XII
REVIEW OF LITERATURE	
Chapter one	1
Initiation of the heartbeat	
	6
Chapter two	
Anatomy of the cardiac conduction system . AV coduction . Formation of AV conduction system . Aspects of cardiac anatomy relevant to arrhythmias.	
Chapter three	27
Pediatric cardiac arrhythmias . Historical background . Mapping of the spread of activation during arrhythmias . Mechanisms of arrhythmias	
Chapter four	47
Diagnosis of cardiac arrhythmias .Initial assessment .Diagnostic testing	

Chapter Five	81
Therapeutic modalities of pediatric arrhythmias . Autonomic interventions . Antiarrhythmic agents . Catheter ablation . Cardiac pacing	
Chapter Six	105
Transesophageal pacing . Transesophageal technique . Applications . Complications	
Patients & methods	165
Results	172
Discussion	218
Conclusions and Recommendations	230
English Summary	232
References	235
Arabic Summary	269

List of Abbreviations

AAIT Atrial pacing-Atrial sensing-inhibiting

mode tachycardia

ACC American college of cardiology

AF Atrial fibrillation

AHA American heart association

ANF Atrial Natriuretic Factor

AP Accessory pathwaysASD Atrial septal defect

AV Atrioventricular

AVNRT Atrioventrivular nodal re-entry tachycardia

AVRT Atrioventricular re-entry tachycardia

bpm Beats per minute

CARTO Non-fluoroscopic electroanatomical magnetic

mapping system

CHB Complete heart block

CHF Congestive heart failure

CR Current Reconstruction

DC Direct current

DCM Dilated cardiomyopathy

DDD Dual chambered pacing, sensing & dual

response.

ECD Equivalent Current Dipole

ECG Electrocardiogram

EMD Effective Magnetic Dipole

EPS Electrophysiological study

ERP Effective refractory period

Fig. FigureFr French

HB Heart block

HBE His Bundle Excitation

HF High frequency

HOCM Hypertrophic obstructive cardiomyopathy

HRV Heart rate variability

IAP Incremental atrial pacing

ILRS Implantable loop recorders

K+ Potassium

LF Low frequency

LQTS Long QT syndrome

MCG Multichannel magnetocardiographicMCT Mobile cardiovascular telemetry

MI Myocardial infarction

MRI Magnetic resonance imaging

Msec. Millisecond

Na+ Sodium

NAPA N-acetyl procainamideODP Overdrive atrial pacing

PJRT Permanent form of junctional reciprocating

tachycardia

PNN50 The percentage of adjacent R-R intervals that

varied by more than 50 s

PNS Phrenic nerve stimulation

PS Pulmonary stenosis

PSVT Paroxysmal supraventricular tachycardia

QTD Q-T dispersion

rMSSD The root mean square of the difference between

the coupling intervals of adjacent R-R intervals

SA Sinoatrial

SAECG Signal-averaged ECG

SDANN Standard deviation of the averaged normal sinus R-R intervals for all 5 minute segments of

the entire recording

SDNN Standard deviation of all normal sinus R-R

intervals

SDNN Mean of the standard deviations of all normal

index sinus R-R intervals for all 5 minute segments of

the entire recording

Seq. p Sequential AV pacing

SNRT Sinus node recovery time

SSS Sick sinus syndrome

SVT Supraventricular tachycardia

TAP Transesophageal atrial pacing

Tbx T_Box

TEAP Transesophageal atrial pacing

TGA Transposition of the great arteries

TOF Tetralogy of Fallot

TTMS Transtelephonic electrocardiographic event

monitors

TWA T wave alternans

VSD Ventricular septal defect

VT Ventricular tachycardia

WPW Wolff-Parkinson-White

3D Three-dimensional

List of Tables

		Page
Table (1):	Components of HRV.	65
Table (2):	Intravenous use of antiarrhythmic drugs for acute	84
	termination of tachyarrhythmias.	
Table (2)	Continue of table 2.	85
Continue:		
Table (3):	Commonly used antiarrhythmic agents in pediatric	94
	population.	
Table (4):	Pacing protocols for transesophageal electrophysiologic study.	127
Table(5):	Comparison of intracardiac & transesophageal techniques to accomplish objectives of electrophysiologic studies.	132
Table(6):	Different cardiac lesions in results	173
Table (7):	Different indications of TEAP & pacing procedures	176
	performed in results	
Table(8):	Outcome of therapeutic & diagnostic procedures	179

List of Figures

		Page
Fig. (1):	Anatomy and cellular electrophysiology of the specialized	4
0 ()	cardiac conduction system.	
Fig. (2):	Photomicrographs of the sinus node.	5
Fig. (3):	Photomicrographs of the atrioventricular (AV) node.	10
Fig. (4):	Photomicrograph of the specialized conduction tissue	11
	positioned at the crest of the muscular interventricular	
	septum & dividing into the right & left bundle branches	
Fig. (5):	Conduction system in abnormal hearts	14
Fig. (6):	Location of the cardiac conduction system	16
Fig. (7):	Ohnell's illustration of the accessory bundle connecting	20
	left atrial myocardium to that of the left ventricle	
Fig. (8):	Ventricular myocytes & distribution of gap junctions in	24
	the adult & newborn canine heart.	
Fig. (9):	Electrocardiogram during the permanent form of	31
	junctional reciprocating tachycardia.	
Fig. (10):	Diagrammatic representation of tachycardias with normal	32
	QRS.	
Fig. (11):	Diagrammatic representation of tachycardias with wide	34
	QRS.	
Fig. (12)	Various electrocardiographic patterns associated with	42-
& Fig	intra-atrial re-entry tachycardia.	43
(12)		
continue:		16
Fig (13):	Selected electrocardiograms of multifocal atrial	46
E:~ (14).	tachycardia and atrial fibrillation.	97
Fig. (14):	Termination of SVT. Suggested algorithm for acute termination of	86 92
Fig. (15):	Suggested algorithm for acute termination of atrioventricular arrhythmias.	94
Fig. (16):	Suggested algorithm for acute termination of ventricular	93
rig. (10).	tachycardia.	93
Fig. (17):	Pace termination of primary atrial tachycardia.	97
Fig. (17):	Over drive pacing.	99
Fig. (19):	Specialized esophageal pacing generator & preamplifier	107
Fig. (20):	Medtronic 6992A lead	107
Fig. (21):	Specialized flexible transesophageal pacing catheters	108
Fig. (22):	Illustration depiciting transesophageal electrograms	112
8 - ()•	obtained from various catheter insertion depths in a 6-year-	
	old child.	
Fig. (23):	Graph of depth of transesophageal electrode catheter	116-
B (/	insertion.	168
Fig. (24):	Diagram showing the recording & stimulation on	120
3 \ /	component & TE electrophysiologic technique	

Fig. (25):	Unipolar simultaneous transesophageal recordings	122
Fig. (26):	Recordings from simultaneous surface	123
	electrocardiographic leads.	
Fig. (27):	Unipolar transesophageal simultaneous recording with	124
	surface leads from a 3 years old boy.	
Fig. (28):	Two transesophageal recordings in a 2.250 g. newborn	126
	with atrial flutter.	
Fig. (29):	Esophageal electrograms in sinus rhythm, atrial flutter &	135
(-0)	atrial fibrillation	
Fig. (30):	Evidence of accessory pathway presence by atrial cycle	136
F! (24)	advancement with premature ventricular beat.	126
Fig. (31):	This patient complains of palpitations & has a short PR	136
E' (22)	that could mask a delta wave.	105
Fig. (32):	This patient presents with atrial fibrillation conducting	137
E:~ (22).	along a left lateral accessory pathway.	120
Fig. (33): Fig. (34):	Atrioventricular reciprocating tachycardia. Atrioventricular nodal reentrant tachycardia	138 139
Fig. (35):	Idiopathic left ventricular tachycardia	142
Fig. (36):	ECG rhythm strip of atrial flutter in an infant.	144
Fig. (37):	Atrial fibrillation with fast conducting ventricular	146
11g. (37).	conduction.	140
Fig. (38):	Induction of atrial fibrillation with esophageal pacing in a	146
8. (6.0).	patient with WPW disease.	
Fig. (39):	Assessment of antegrade accessory pathway refractory	147
8 . (3.7).	period in a patient with WPW disease using TEAP.	
Fig (40):	Real time unfiltered MCG recordings during programmed	149
0 . ,	TEAP.	
Fig (41):	MCG mapping	150
Fig (42):	Evaluation of AV nodal Wenckebach point with	153
	esophageal pacing under beta blocking therapy.	
Fig (43):	Overdrive pacing.	155
E:~ (44).	Triggaring of reciproceting techniquedic with a single	157
Fig (44):	Triggering of reciprocating tachycardia with a single esophageal stimulus in a patient with undocumented	157
	palpitations	
Fig (45):	Interruption of typical atrial flutter with esophageal pacing.	161
116 (45).	interruption of typical arrial natter with esophagear pacing.	101
Fig (46):	The rhythm strips shown are continuous with events.	161
Fig (47):	Inadvertent ventricular pacing occurs when the lead is	163
- 8 \ •• /•	pushed too deep in the esophagus & high energies are	_00
	used.	
Fig. (48):	Sex of patients.	172
Fig. (49):	Types of arrhythmia.	174
•	Variable presentations of the patients	175
1 10 17HI	variano, dienemandon di die Dallenia	

Fig. (51):	Different types of sedation used in the study.	176
Fig. (52):	Different therapies used by the patients.	177
Fig. (53):	Case1, an AP view for the patient.	١80
Fig. (54):	Case1, a lateral view for the patient.	181
Fig. (55):	Case1, Transesophageal atrial recording showing basal heart rate of 165 bpm.	182
Fig. (56):	Case1, the same patient with heart rate of 185 bpm.	183
Fig. (57):	Case1, with TEAP at a rate of 300bpm.	184
Fig. (58):	Case1, Calculation of sinus node recovery time (SNRT).	185
Fig. (59):	Case1, Another calculation of SNRT.	186
Fig (60):	Case2, Transesophageal recording in a case of Ebstein anomaly.	187
Fig. (61):	Case3, Basal heart rate of 120 bpm after sedation.	188
Fig. (62):	Case3, TEAP at a rate >300 bpm.	189
Fig. (63):	Case3, TEAP at a rate >300 bpm inducing antidromic then orthodromic supraventricular tachycardia.	190
Fig. (64):	Case3, the patient with orthodromic supraventricular tachycardia.	191
Fig. (65):	Case3, the patient with a trial of atrial overdrive pacing of SVT using TEAP.	192
Fig. (66):	Case3, the patient with another trial of atrial overdrive pacing using TEAP with return to sinus rhythm.	193
Fig. (67):	Case3, Return to sinus rhythm.	194
Fig. (68):	Case4, Basal heart rate.	195
Fig. (69):	Case4, Basal heart rate.	196
Fig. (71):	Case4, the patient after cardiac stimulation with atropine & adrenaline.	197
Fig. (71):	Case4, the patient showing Wenckebach phenomenon at a rate 190 bpm.	198
Fig. (72):	Case4, Calculation of SNRT.	199
Fig. (73):	Case4, the patient with TEAP at a rate 300 bpm.	200
Fig. (74):	Case4, the patient with SVT at a rate of 270 bpm.	201
Fig. (75):	Case4, the patient with a trial of overdrive pacing using TEAP at rate of 300 bpm.	202
Fig. (76):	Case4, the patient still in SVT with another trial of atrial overdrive pacing using TEAP at a rate of 360 bpm.	203
Fig. (77):	Case4, the patient was given a third trial of atrial overdrive pacing using TEAP at a rate of 360 bpm.	204
Fig. (78):	Case4, the patient still in SVT & was given IV propranolol.	205
Fig. (79):	Case4, the patient still in SVT with a trial of electrocardioversion in a dose of 1 joule/kg.	206

Fig. (80):	Case4, Brief return to sinus rhythm after the first trial of electrocardioversion.	207
Fig. (81):	Case4, the patient still in SVT with a trial of giving a half loading digoxin.	208
Fig. (82):	Case4, A second trial of electrocardioversion at a dose of 2 joules/kg wuth return to sinus rhythm.	209
Fig. (83):	Case4, the patient after return to sinus rhythm.	210
Fig. (84):	Case5, Transesophageal atrial pacing for this patient at a rate of 360 bpm failed to penetrate the circuit and there is failure of capture.	211
Fig. (85):	Case6, Transesophageal atrial pacing of this patient at a rate 180 bpm inducing Wenckebach phenomenon with 3:1 conduction across AV node.	212
Fig. (86):	Case6, TEAP at a rate 300 bpm showing Wenckebach phenomenon with 3:1 conduction across AV node.	213
Fig (87):	Case6, During transesophageal atrial recording, the patient developed premature ventricular contraction.	214
Fig (88):	Case7, ECG recording of the patient showing sequential pacing using transesophageal atrial catheter at a rate of 160 bpm	215
Fig (89):	Case8, ECG showing sequential pacing using a	216
	transesophageal atrial catheter with a rate of 150 bpm.	
Fig (90):	Case9, ECG of the same patient showing atrial pacing using a transesophageal atrial catheter at rate of 120 bpm.	217

Introduction

Palpitation is an unpleasant awareness of a rapid heart beat & may be a terrifying event for children. Sometimes, in infants & young children, parents notice a paroxysmal rapid pulse by observing fluttering in the neck or pounding in the chest of their children (*Ko et al.*, 2004).

However, routine methods often fail to document episodic arrhythmia because the episodes may be brief, infrequent or both (*Bubolz & Case.*, 1999).

Transoesophageal cardiostimulation is a semiinvasive method of stimulation of atrii enabling the performance of the programmed atrial stimulation without the inevitability of an invasive vascular approach (*Behulova et al., 1997*).

Transesophageal atrial stimulation has proved to be a useful diagnostic tool in the management of paroxysmal supraventricular tachycardia (SVT) (*Haaland et al., 2003*).

Transesophageal atrial pacing can be considered as a valid therapeutic device for the management of re-entry SVTs occurred during general anaesthesia, resulting it effective, safe and easy-practicable (*Romano et al.*, 2003).

The technique of transesophageal electrocardiographic (ECG) recording and atrial pacing is a minimally invasive tool with a wide spectrum of clinical application in the pediatric age group (*Hessling et al.*, 2003).

The technique is especially suitable for the evaluation and management of SVT in newborns and infants and with its easy reproducibility offers the potential to learn more about the natural history of accessory connections (*Hessling et al.*, 2003).

Transoesophageal stimulation of the atria is a good & sensitive test & can be recommended in WPW syndrome as a screening examination in particular in junior subjects. To assess the risk of sudden death in subjects with this syndrome it is, however, necessary to evaluate the complex of all assembled data, as the shortest R-R interval in induced atrial fibrillation is not sufficiently specific (*Vanier et al.*, 1992).

Transoesophageal atrial pacing with an easily swallowed pill electrode is safe, well tolerated, and is as efficacious as direct current cardioversion (DCC) for refractory atrial flutter (*Tucker & Wilson.*, 1993).

Transoesophageal atrial pacing is a safe & effective means of terminating atrial flutter in the pediatric population (*Rhodes et al.*, 1995).

Transoesophageal atrial pacing is a practical, safe and effective method for emergency cardiac pacing (*Paul et al.*, 1993).

It can be applied satisfactorily in children undergoing cardiac surgery. If urgent cardiac pacing must be applied in these patients, TEAP would be a choice (*Sung et al.*, 1995).

Aim of work

The present work aims at:

- . Estimating the efficacy and applicability of transoesophageal atrial pacing in terminating SVT in pediatric patients.
- . Defining the characteristics of SVT to help efficient management which will be compared to other lines of intervention.