

Irrigation and Hydraulics Department

Storm Water Management and Urbanization Growth in Mega City

Case study: East Cairo - Egypt

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Civil Engineering (Irrigation and Hydraulics)

By

AHMED MAHROUS MOHAMED ABOELFOTOH ZAKRYA

B.Sc. of Civil Engineering (Irrigation and Hydraulics) Ain Shams University, 2011

Supervised By

Prof. Dr. Ashraf Mohamed
ELmoustafa
Irrigation and Hydraulics Department
Faculty of Engineering
Ain Shams University

Assistant Prof. Dr. Ahmed Mohamed
Helmi
Irrigation and Hydraulics Department
Faculty of Engineering
Cairo University

Cairo 2017

EXAMINERS COMMITTEE

Name : Ahmed Mahrous Mohamed AboElfotoh Zakarya

Thesis : Storm water Management and Urbanization Growth in Mega

City – Case study: Cairo East - Egypt

Degree : Degree of Master in Civil Engineering

(Irrigation and Hydraulics Department)

Name, Title, and Affiliation	Signature
Prof. Dr. Anas Mohamed Abol Ela El Molla AL-Azhar University Faculty of Engineering Irrigation and Hydraulics Department	
Prof. Dr. Ahmed Ali Ali Hassan Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department	••••••
Prof. Dr. Ashraf Mohamed El Mostafa Abdel Badie Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department	
Dr. Ahmed Mohamed Helmi Hussein Amer Assistant Prof. Cairo University Faculty of Engineering Irrigation and Hydraulics Department	

Date:

21/01 / 2018

Abstract

The continuity of urban expansion that has been observed in the Fifth Settlement, Cairo, Egypt will cause an increase in impervious areas, and accordingly will have an effect on the hydrological parameters and natural water cycle, such as increasing runoff volumes and decreasing the maximum soil infiltration potential. No studies were performed to examine the effect that the change in land use would have on the hydrological parameters of the watersheds in this area.

However, a great deal of research has been done in several locations from around the world that are available to study and serve this purpose. Most of the research was based on a combination of remote sensing with the Soil Conservation Service model in order to automate the calculation of runoff and test the impacts of urban expansion on runoff by connecting the two modeling results with spatial analysis techniques on Geographic Information System (GIS). The Long-Term Hydrologic Impact Assessment model run on a GIS is a relatively simple, user-friendly model that uses the Curve Number (CN) method to estimate changes in surface runoff between different stages of development.

Results showed that the percentage of impervious areas increased over 10 years of urban expansion by about 30% of the total area of the catchment. Also, the runoff depths increased by an average of 15%, and the runoff volumes increased approximately 10 times more than under natural conditions. Finally, this study provides useful information for land-use planning, management and the proposed methods that can serve as a useful tool for future impact of land-use studies. Also, from this study, it recommended to divide the study area as much possible into several sections, and to study each section as a standalone area in order to guarantee more accurate results related to faster classification.

Key words: Storm; Precipitation; GIS; Sustainable; Satellite; image;

Catchment; Runoff; Hydrological; Negative; Impact; tool;

CONTENTS

List of Figures	i
List of Tables	ii
List of Symbols	iii
Chapter I: Introduction	
1.1 General	1
1.2 Study Objective	2
1.3 Organization of Work	2
Chapter II: Literature Review	
2.1 General	4
2.2 Storm Water Management in Urban Areas	4
2.2.1 Sustainable Urban Drainage Systems	4
2.2.2 Surface Water Management Concept	5
2.2.3 Design Concept of SUDS Structures	8
2.2.4 Different Types Of SUDS	13
2.3 Urbanization Growth Hazard	21
2.3.1 General	21
2.3.2 Surface Runoff Effects	21
2.3.3 Climatic Effects	23
2.3.4 Land-use Pattern and Ground Water rates	24
2.4 Runoff Calculations by SCS Method	25
2.4.1 General	25
2.4.2 SCS Runoff Estimation	25
2.4.3 SCS Runoff Curve Number Estimation	26
2.5 Previous studies	28

Chapter III: Definition of the Problem And Study Area	
3.1 General	38
3.2 Work Methodology	38
3.3 Study Area	39
3.4 Data Collection and Preparation	40
3.4.1 Topographic Data	42
3.4.2 Hydrologic Data	44
3.4.3 Hydrogeological and Soil Data	47
Chapter IV: Methodology	
4.1 Data Pre-Processing	49
4.1.1 Identifying Natural Streams Locations	49
4.1.2 Mosaic Satellite Images	51
4.1.3 Analyzing satellite Images	56
4.1.4 Supervised and Un-Supervised Classifications	57
4.1.5 Correction of Raster Value	59
4.2 Data Processing and Model Development	64
4.2.1 General	64
4.2.2 Supervision of Raster Classification	65
4.2.3 Identify SCS Method Parameters	69
Chapter V: Model Application and Results	
5.1 Application Sequence	73
5.1.1 Satellite Image's Key Signature	73
5.1.2 Raster Supervised Classification	74
5.2 Results within Selected Watershed	78
5.3 Results Interpretation	80
Chapter VI: Conclusion & Recommendations	
6.1 General	82
6.2 Conclusions	82

6.3 Recommendations	84
References	85

List of Figures

Figure		Page
(1-1)	Resulted runoff from impervious areas	1
(2-1)	Sustainable drainage objectives	5
(2-2)	SUDS techniques in sequence	6
(2-3)	Stage-Storage Curve	9
(2-4)	Ponds and basins for temporary Storm-water storage	10
(2-5)	Infiltration Rate Curve	12
(2-6)	Sample of infiltration trench	15
(2-7)	Sample of a bio-retention area	18
(2-8)	Hydrographs effects due to urbanization	22
(2-9)	Relation between runoff and storm rainfall	30
(3-1)	DEM raster under GIS visualization	42
(3-2)	Hydrogeological Map of Egypt	48
(4-1)	Streams and watershed locations within the study area	51
(4-2)	Collected satellite images from Plexscape.Earth.	52
(4-3)	The output mask	53
(4-4)	Flow chart sequence for the created tool	54
(4-5)	User window	56
(4-6)	Unsupervised raster	58
(4-7)	Supervised raster	58
(4-8)	Selecting unwanted areas using polygons	60
(4-9)	Adding three bands	61
(4-10)	Composite three bands	62

i

List of Figures

Figure		Page
(4-11)	Produce the mask polygon	62
(4-12)	Production of the final satellite image	63
(4-13)	User window for the Re-define Raster Value tool	64
(4-14)	Assign classification data flow chart	67
(4-15)	Redefine classification data	68
(4-16)	Raster classification flow chart	69
(4-17)	Calculating SCS parameters flow chart	71
(4-18)	Final attribute table of classified raster	72
(5-1)	Proposed group of points	73
(5-2)	Assigning the required data	72
(5-3)	Adapting the supervised tool parameters	75
(5-4)	Output classification raster 2006	76
(5-5)	Output classification raster 2016	77
(5-6)	Output raster 2016 within watershed	78
(5-7)	Output raster 2006 within watershed	79

List of Photos

Photo		Page
(2-1)	Example of filter strips	13
(2-2)	Example of a green roof	14
(2-3)	Sample of Swales	17
(2-4)	Examples of detention (L) and retention (R) ponds	20
(3-1)	Satellite image for the study area in 2006	43
(3-2)	Satellite image for the study area in 2016	44
(4-1)	Final result from GIS developed tool	55
(4-2)	Classified point shape files	66

List of Tables

Table		Page
(2-1)	Curve numbers of urbanized areas	27
(2-2)	Curve numbers of agricultural lands	28
(3-1)	Rainfall Depths at Cairo Airport	4 ~
(3-2)	Rainfall Depths at Katamia Airport	. 45
(3-3)	Mean values between two stations	47
(5-1)	Required data for each group of points	7.4
(5-2)	Calculated hydrologic data according to satellite image	
	2006	. 77
(5-3)	Calculated hydrologic data according to satellite image	
	2016	78
(5-4)	Calculated hydrologic data according to satellite image	
	2006	. 79
(5-5)	Calculated hydrologic data according to satellite image	
	2016	. 80

List of Symbols

Symbol		Dimension
γ	Specific weight	$ML^{-2}T^{-2}$
Α	Surface Area function in water level	L^2
A_f	Surface area of filter bed	L^2
A_{RH}	Area contributing to runoff	L^2
С	Rational coefficient	Dimensionless
CN	Curve Number	Dimensionless
D	Rainfall event duration	Т
FE	Filter Efficiency	Dimensionless
\mathbf{F}_{c}	Final infiltration capacity	LT ⁻¹
\mathbf{F}_{o}	Infiltration capacity	LT ⁻¹
1	Rainfall intensity	LT ⁻¹
I _a	Initial abstraction	L
K	Field hydraulic conductivity	LT ⁻¹
$\mathbf{P_r}$	Pressure	$ML^{-1}T^{-2}$
Р	Total rainfall	L
P_in	Total Rainfall in inch Unites	L
P_{RH}	Average rainfall over period	L
Q	Flow rate	L^3T^{-1}
\mathbf{Q}_{i}	Inflow rate	L^3T^{-1}
Q_o	Outflow rate	L^3T^{-1}
\mathbf{Q}_{out}	Outflow rate function in water level	L^3T^{-1}
R	Hydraulic radius	L
R_d	Excess runoff depth	L
R_{di}	Ratio of drained area to the infiltration	Dimensionless
	area	
S	Maximum soil potential	L
SL	Overall slope of the channel	LL ⁻¹

List of Symbols

Symbol		Dimension
S_in	Maximum soil potential in inch unites	L
S_v	Storage volume	L ³
V	Velocity	LT ⁻¹
V_r	Void ratio of fill material	Dimensionless
V_{tv}	Water treatment volume	L^3
V_{RH}	Volume of usable rainwater	L ³
Z	Elevation at centroid	L
d_f	filter bed depth	L
h_f	Average height of water above filter	L
	bed (half-maximum height)	
h_T	Total Depth	L
g	Gravitational acceleration constant	LT ⁻²
n	Manning's coefficient	TL ^{-0.3}
q	Infiltration coefficient from percolation	LT ⁻¹
	test	
t	Time	T
t_c	Constant determining how quickly the	T ⁻¹
	infiltration decreases	
t_f	Time required to water volume to	Т
	percolate through filter bed	

CHAPTER ONE

INTRODUCTION

1.1 General

Increased densities and concentrations of residential, industrial and commercial buildings and facilities are referred to either urbanization growth or urbanization development. An increase in the continuity of urbanization growth over decades will cause an increase in impervious areas, which will have an effect on the hydrological parameters and natural water cycle by increasing runoff volumes and decreasing the maximum soil infiltration potential, as shown in figure (1-1). This research focuses on assessing the negative impacts that occur as a result of growing urbanization, and accordingly proposes mitigation measures.

Figure (1-1) Resulted runoff from impervious areas

Chapter one Introduction

1.1 Study Objective

Land-use change in urbanizing areas can significantly changing the hydrology of a watershed and can have serious impacts runoff depths, downstream flooding, and groundwater recharge rates. Most currently available models used in estimating the hydrologic impacts of urbanization are not well suited to long-term hydrologic analysis or are too complex and data intensive for widespread practical application. The Long-Term Hydrologic Impact Assessment model run on a Geographic Information System (GIS) is a relatively simple, user-friendly model that uses the Curve Number (CN) method to estimate changes in surface runoff between different stages of development.

This research investigates the changes in runoff depths which resulting from the transformation of rural-lands to urban-lands within 5th settlement watershed between years (2006-2016) and propose an applicable solution by SUDS techniques to absorption the difference runoff volume between these two years.

1.1 Organization of Work

This thesis is organized in six chapters as follows to study the impacts of the urbanization growth in Cairo east especially in the 5th settlement basin, on the hydrological parameters

Chapter one: gives an introduction about the subject and the organization of the work and objectives.

Chapter two: presents brief notes and literature review about urbanization impact, sustainable drainage system techniques SUDS and previous studies around this field.

Chapter three: presents the problem definition which related to the study area.

Chapter one Introduction

Chapter four: presents the model development under the ARC.GIS interface.

Chapter five: presents the model application to the selected problem, the model results, the discussion and analysis.

Chapter six: presents the main conclusion of the research and also states the recommendations to be taken into consideration in the future.