IMPROVEMENT OF SEED PRODUCTION AND QUALITY OF COMMON BEAN UNDER WATER STRESS CONDITIONS

By

HANY GAMAL METWALLY ABD EL-GAWAD

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2001 M.Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2006

> A Thesis Submitted in Partial Fulfillment of The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

IMPROVEMENT OF SEED PRODUCTION AND QUALITY OF COMMON BEAN UNDER WATER STRESS CONDITIONS

By

HANY GAMAL METWALLY ABD EL-GAWAD

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2001 M.Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2006

This thesis for Ph.D. degree has been approved by:

Prof. Dr. Samir Kamel El-Seifi	•••••
Prof. Emeritus of Vegetable	Crops, Faculty of Agriculture, Suez
Canal University	
Prof. Dr. Ibrahim Ibrahim El-Ok	sh
Prof. Emeritus of Vegetable	Crops, Faculty of Agriculture, Ain
Shams University	
Dr. Ahmed Abou El-Yazied Abd	El-Hafize
Associate Prof. of Vegetable	Crops, Faculty of Agriculture, Ain
Shams University	
Prof. Dr. Ahmed Mahmoud El-G	izawy
Prof. Emeritus of Vegetable C	rops, Faculty of Agriculture, Ain Shams
University	
Date of Examination: 28 / 7 / 2010)

IMPROVEMENT OF SEED PRODUCTION AND QUALITY OF COMMON BEAN UNDER WATER STRESS CONDITIONS

By

HANY GAMAL METWALLY ABD EL-GAWAD

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2001 M.Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2006

Under the supervision of:

Prof. Dr. Ahmed Mahmoud El-Gizawy

Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Mohamed Soliman

Associate Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University

Dr. Ahmed Abou El-Yazied Abd El-Hafize

Associate Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University

ABSTRACT

Hany Gamal Metwally, Improvement of Seed Production and Quality of Common Bean under Water Stress Conditions. Unpublished Ph.D Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2010.

The field experiment was carried out during the growing seasons of 2007 and 2008, at the farm, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Egypt, in order to in order the investigate the effect of irrigation at different percentage of available soil water depletion, foliar application of glycine betaine and salicylic acid on vegetative growth, yield and quality of common bean (*Phaseolus vulgaris* L.). Irrigation at different percentages of available soil water depletion (30, 45, 60, 75 and 90%) was started after full germination until seed harvesting. There were three levels of glycinebetaine (0, 2, and 4 mM), applied after 30 and 50 day from sowing (foliar application). There were three levels of salicylic acid (0, 0.5, and 1 mM), applied after 40 and 60 day from sowing (foliar application).

Results of this study indicated that irrigation at depletion of 30 % available soil water increased leaf number, leaf area, leaf fresh and dry weight, stem fresh and dry weight in the two seasons as compared with the other studied irrigation treatments.

Respecting the foliar application of glycine betaine, the obtained data showed that the foliar application of glycine betaine reduced leaf number, leaf area, leaf fresh weight, stem fresh weight and percentage of yellow plants, but the reductions were insignificant in the first tested However, the differences detected for the foliar application of glycine betaine was significant in leaf dry weight in the first tested season and not significant in the second tested season. In the two tested seasons, the differences were insignificant for the values of leaf area, leaf fresh weight, stem fresh and dry weight and percentage of yellow leaves. However, the differences detected for the foliar application of salicylic

acid was significant in leaf number in the first tested season and not significant in the second tested season. Moreover, irrigation at depletion of 30% available soil water gave the highest values in two seasons as compared with the other studied irrigation treatments. The foliar application of 0 and 2 mM/L glycine betaine increased pod number and pod fresh weight per plant compared with application of 4 mM/L glycine betaine treatment. However, the foliar application of 0 and 2 mM/L glycine betaine increased pod number and pod fresh weight per plant compared with application of 4 mM/L glycine betaine treatment.

Irrigation at depletion of 30 % available soil water increased seed yield per plant, seed yield per feddan and hundred-seed weight compared with the other studied irrigation treatments. The foliar application of 2 mM/L glycine betaine increased seed yield per plant and per feddan in the two tested seasons compared to other treatments. Further, the foliar application of 0.5 mM/L salicylic acid produced the highest seed yield per plant and per feddan in the two tested seasons.

Chemical analyses of common bean responded positively to irrigation at different percentages of available soil water depletion. Irrigation at depletion of 30% available soil water resulted in the highest values of chlorophyll reading, protein content, total carbohydrate percentage and calcium percentage as compared with the other studied irrigation treatments in the two seasons. However, irrigation at depletion of 90% available soil water gave the highest values of free proline as compared with the other studied irrigation treatments in the two seasons. There were statistically insignificant effects for foliar application of glycine betaine and salicylic acid on chlorophyll reading, free proline, protein content and calcium percentage in the two tested season.

The highest values of stomatal density were noticed by irrigation at depletion of 30 and 45% available soil water, without significant differences between them. Meanwhile, the other irrigation treatments led to lower stomatal frequency without significant differences among them. The decreasing of available soil water gradually decreased the seed coat

thickness; each decrease of available soil water caused a reduction of seed coat thickness. Moreover, application of irrigation after depletion of 90 % available soil water whether foliar applied with glycine betaine and salicylic acid or not showed the highest values of the seed testa thickness with compared with the other studied treatments.

It was, therefore, concluded that reproductive and seed yield characteristics of common bean responded positively to irrigation, foliar application of 2 mM/L glycine betaine and 0.5 mM/L salicylic acid.

Key Words: Common Bean, *Phaseolus vulgaris*, Water stress, Glycine betaine, Salicylic acid, Seed yield, Reproductive characteristics.

ACKNOLEDGEMENT

Firstly, I direct my deepest thanks to **Allah** who gave me the power and patience to finish this work.

The writer whishes to express his great thanks and deep gratitude to **prof. Dr. Ahmed Mahmoud El-Gizawy**, Professor Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for suggesting the current study and his supervision and help during the course of this study and during preparing and reviewing the manuscript.

Deep gratitude and thanks is also due to **Dr. Mohamed Mohamed Solaiman**, Associate Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for his kind supervision, advice, valuable assistance, during the preparation of this thesis.

I would like to thank **Dr. Ahmed Abou El-Yazied Abd El-Hafize**, Associate Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for his supervision, great support and continued help during the preparation of this work.

Special thanks also to **Prof. Dr. Ibrahim Ibrahim El-Oksh**, Professor Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for his help, valuable advices and kind help.

Thanks are also extended to **the staff members** of the Department of Horticulture, Faculty of Agriculture, Ain Shams University for their encouragement and help during the course of this work.

Finally, deepest gratitude for **my family** for their continuous help and encouragement through this work.

CONTENTS

r	age
LIST OF TABLES	iii
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1 Effects of water stress	4
2.1.1 Vegetative and flowering growth characters	4
2.1.2 Seed yield and its components	8
2.1.3 Chemical constituents.	12
2.2 Effects of glycine betaine	14
2.2.1 Vegetative and flowering growth characters	15
2.2.2 Seed yield and its components	17
2.2.3 Chemical constituents	19
2.3 Effects of salicylic acid	24
2.2.1 Vegetative and flowering growth characters	25
2.2.2 Seed yield and its components	26
2.2.3 Chemical constituents	27
3. MATERIALS AND METHODS	30
3.1 The experiment layout	30
3.2 The experimental design and treatments	31
3.3 Studied characteristics	32
3.3.1 Vegetative characteristics	32
3.3.2 Number of flowers per plant	32
3.3.3 Fruit characteristics	33
3.3.4 Seed characteristics	33
3.3.5 Chemical analyses	35
3.3.6. SDS-PAGE analysis of total soluble protein banding	
pattern	35
3.3.7 Morpho-anatomical study of stomatal aperture	36
3.3.8 Seed testa thickness	37

3.4 Statistical analysis	37
4. RESULTS AND DISCUSSION	38
4.1 Vegetative characteristics	38
4.2 Number of flowers per plant	48
4.3 Leaf chemical analyses	51
4.4 Fruit characteristics	57
4.5 Seed yield and its components	61
4.6 Seed germination and vigor	68
4.6.1 Germination percent and rate	68
4.6.2 Emergence percentage and rate	68
4.6.3 Seed vigor (electrical conductivity)	73
4.7 Seed total carbohydrate percentage	76
4.8 The SDS-PAGE analysis	78
4.9 Morpho-anatomical study of stomatal aperture	78
4.10 Seed testa thickness	83
5. SUMMERY AND CONCLUSION	87
6. REFERENCES	93
7. ARABIC SUMMERY	

LIST OF TABLES

Table	Page
Table (1): Summary of the effects of exogenous application of glycine betaine on different plant species	21
Table (2): Enhancement of tolerance to abiotic stress via exogenously applied glycinebetaine in higher plants	23
Table (3): Field capacity, wilting point and available soil water of	23
the experimental soil during the two seasons of 2007 and 2008	31
Table (4): Effect of irrigation at different percentage of available	
soil water depletion, foliar application of glycine	
betaine and salicylic acid on leaf number of common	
bean, in the two seasons.	39
Table (5): Effect of irrigation at different percentage of available	
soil water depletion, foliar application of glycine	
betaine and salicylic acid on leaf area of common bean,	
in the two seasons	40
Table (6): Effect of irrigation at different percentage of available soil water depletion, foliar application of glycine	
betaine and salicylic acid on leaf fresh weight of	
common bean, in the two seasons	41
Table (7): Effect of irrigation at different percentage of available	71
soil water depletion, foliar application of glycine	
betaine and salicylic acid on leaf dry weight of	
common bean, in the two seasons	42
Table (8): Effect of irrigation at different percentage of available	
soil water depletion, foliar application of glycine	
betaine and salicylic acid on stem fresh weight of	
common bean, in the two seasons	43
Table (9): Effect of irrigation at different percentage of available	
soil water depletion, foliar application of glycine	

betaine and salicylic acid on stem dry weight of common bean, in the two seasons	44
Table (10): Effect of irrigation at different percentage of available soil water depletion, foliar application of glycine	
betaine and salicylic acid on percentage of yellow	
plants of common bean, in the two seasons	45
soil water depletion, foliar application of glycine	
betaine and salicylic acid on flower number of	
common bean, in the two seasons	49
Table (12): Effect of irrigation at different percentage of available	
soil water depletion, foliar application of glycine	
betaine and salicylic acid on cholorophyll reading	
(SPAD) of common bean leaf, in the two seasons	52
Table (13): Effect of irrigation at different percentage of available	
soil water depletion, foliar application of glycine	
betaine and salicylic acid on free proline of common	
bean leaf, in the two seasons	53
Table (14): Effect of irrigation at different percentage of available	
soil water depletion, foliar application of glycine	
betaine and salicylic acid on total protein of common	
bean leaf, in the two seasons	54
Table (15): Effect of irrigation at different percentage of available	
soil water depletion, foliar application of glycine	
betaine and salicylic acid on calcium % of common	
bean seed, in the two seasons	55
Table (16): Effect of irrigation at different percentage of available	
soil water depletion, foliar application of glycine	
betaine and salicylic acid on pods number of common bean, in the two seasons	5 0
Table (17): Effect of irrigation at different percentage of available	58
soil water depletion, foliar application of glycine	
son water depiction, router application of grycine	

betaine and salicylic acid on pods fresh weight per
plant of common bean, in the two seasons 59
Table (18): Effect of irrigation at different percentage of available
soil water depletion, foliar application of glycine
betaine and salicylic acid on seed yield per plant of
common bean, in the two seasons
Table (19): Effect of irrigation at different percentage of available
soil water depletion, foliar application of glycine
betaine and salicylic acid on seed yield of common
bean, in the two seasons
Table (20): Effect of irrigation at different percentage of available
soil water depletion, foliar application of glycine
betaine and salicylic acid on hundred-seed weight of
common bean, in the two seasons
Table (21): Effect of irrigation at different percentage of available
soil water depletion, foliar application of glycine
betaine and salicylic acid on harvest index of common
bean, in the two seasons
Table (22): Effect of irrigation at different percentage of available
soil water depletion, foliar application of glycine
betaine and salicylic acid on germination percentage of
common bean leaf, in the two seasons
Table (23): Effect of irrigation at different percentage of available
soil water depletion, foliar application of glycine
betaine and salicylic acid on germination rate of
common bean, in the two seasons
Table (24): Effect of irrigation at different percentage of available
soil water depletion, foliar application of glycine
betaine and salicylic acid on field emergance
percentage of common bean, in the two seasons
Table (25): Effect of irrigation at different percentage of available
soil water depletion, foliar application of glycine

betaine and salicylic acid on field emergance rate of	
common bean, in the two seasons	72
Table (26): Effect of irrigation at different percentage of available	
soil water depletion, foliar application of glycine	
betaine and salicylic acid on electrical conductivity of	
common bean, in the two seasons	74
Table (27): Effect of irrigation at different percentage of available	
soil water depletion, foliar application of glycine	
betaine and salicylic acid on total carbohydrates of	
common bean seed, in the two seasons	77
Table (28): Patterns of total soluble proteins extracted from	
common bean leaf treated with irrigation at different	
percentage of available soil water depletion, foliar	
application of glycine betaine and salicylic acid during	
the season of 2008	80

LIST OF FIGURES

Figure Pa		Page
1	SDS-PAGE analysis of total soluble protein banding pattern	
	from common bean leaf treated with Irrigation at	
	different percentage of available soil water depletion,	
	foliar application of glycine betaine and salicylic acid	
	during the season of 2008	79
2	Scanelectron micrograph of stomata on the lower surface	
	of common bean leaf in the irrigation treatments	82
3	Scanelectron micrograph of seed testa thickness on the	
	lower surface of common bean seed in the irrigation	
	treatments	84
4	Scanelectron micrograph of seed testa thickness on the	
	lower surface of common bean seed in the irrigation	
	treatments, foliar application of glycine betaine and	
	salicylic acid	86

LIST OF ABBREVIATIONS

<u>Abbreviation</u> <u>Meaning of abbreviation</u>

A.O.A.C. Association of official agricultural chemists

ASA Acetyl salicylic acid

Cm, Cms Centimeter, Centimeters

cv., cvs. Cultivar, Cultivars

D.W. Dry Weight

Fed Feddan g, gm Gram

G, GB glycine betaine

ha. Hectare
I Irrigation
Kg Kilogram
m Meter

m² Square meter mm Millimeter

mM/L Millimol / liter
M.S. Mstatic software

mg Milligram ml Milliliter

S, SA Salicylic acid