تأثير السلوك الغذائى فى الستة أشهر الأولى على إمكانية حدوث الحساسية

رسالة مقدمة من

الطبيبة / فاطمة أنور عبد القادر

بكالوريوس الطب والجراحة توطئة للحصول على درجة الماجستير في طب الأطفال

تحت إشراف أد سناء يوسف شعبان

> أستاذ طب الأطفال كلية الطب – جامعة عين شمس

أمد مي فؤاد نصار

أستاذ طب الأطفال المساعد كلية الطب – جامعة عين شمس

أمد سها عز العرب عبد الوهاب

أستاذ الباثولوجيا الإكلينيكية المساعد كلية الطب - جامعة عين شمس

كليـة الطب جامعة عين شمس 2006

Different Feeding Patterns in the First Six Months of Life and the Probability of Allergic Tendency

Thesis submitted for partial fulfillment of master degree in Pediatrics Presented by

Dr Fatma Anwar Abdel Kader MB.Bch, Azhar University

Under the supervision of

Professor Dr. Sanaa Youssef Shabaan

Professor of Pediatrics Faculty of Medicine Ain Shams University

Assistant Professor Dr May Fouad Nassar

Assistant Professor of Pediatrics Faculty of Medicine Ain Shams University

Assistant Professor Dr Soha Ezz El-Arab Abdel Wahab

Assistant Professor of Clinical Pathology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2006

ACKNOWLEDGMENT

First of all, thanks to ALLAH, most gracious and most merciful.

I would like to express my deepest gratitude and sincere thanks to *Professor Or. Sanaa Youssef Shabaan*, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, who has kindly supervised this thesis. I am deeply indebted to her for giving me all the facilities to complete this work.

I wish to express my deepest appreciation and respect to *Or. May Fouad Nassar*, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University. Without her kind supervision and support, this work would not have been accomplished.

I would like to express my deepest gratitude to *Dr. Soha Ezz Elarab*, Assistant Professor of Clinical pathology, faculty of Medicine, Ain Shams University, for her continuous advice and great help in fulfilling the practical part of this work.

I would like to express my deepest gratitude to *Or. Salwa Reda Elbatrawy*, Lecturer of National Institute of Research for giving me all the facilities to complete this work.

Finally, I wish to express my deep appreciation to every one who gave me a hand through this study. My deep thanks and gratitude to all members of the Department of Pediatrics El-Mansoura governorate hospital.

Fatma Anwar Abdel Kader

LIST OF CONTENTS

Subject	Page
Introduction	1
Aim of the work	3
Review of the Literature	
- Breast feeding	4
- Cow milk	38
- Formula feeding	58
Subjects and methods	63
Results	74
Discussion	96
Summary and conclusion	103
Recommendations	105
References	106
Arabic summary	

List of Tables

Tables in review:

Table 1	Nucleotide content of human milk	14
Table 2	The concentration of calcium phosphorus and magnesium in human and cow's milks and in some commercial preparations	17
Table 3	Examples of the non-nutritional components of breast milk	20
Table 4	Antibacterial antibiotics and breast feeding	28
Table 5	Cytokines in Human Milk: Mean concentration and functions:	33
Table 6	composition of cow's milk compared to human milk	40
Table 7	Summary of recommendations for treatment (tertiary Prevention) of food allergy in infancy by the committees on nutrition of the AAP and ESPACI/ESPGHAN	55
Table 8	Recently recommended minimum and maximum contents of various nutrients for infant formula manufactured in the United States	59

Tables in the results:

Table 9	Number of cases with repeated chest infection among the 4 studied groups	77
Table 10	Number of cases with other cow milk allergy symptoms among the 4 studied groups.	79
Table 11	Number of cases with family history of allergy among the studied groups	81
Table 12	Number of cases with regular maternal cow milk intake among the 4 studied groups	83
Table 13	Age and basic anthropometric measurements among the selected cases from the 4 studied groups	85
Table 14	Hematological parameters among the selected cases from the 4 studied group	86
Table 15	Comparison between the selected cases from 4 studied groups as regards positive total IgE level	87
Table (16)	Comparison between the selected cases from 4 studied groups as regards positive specific IgE levels.	89
Table 17	Relation between increased total IgE and family history of allergy	91

	among selected cases from all studied groups.	
Table 18	Relation between increased total IgE and regular maternal cow	92
	milk intake among selected cases from all studied groups.	
Table 19	Relation between increased specific IgE and family history of	93
	allergy among selected cases from all studied groups.	
Table 20	Relation between increased specific IgE and regular maternal cow	94
	milk intake among selected cases from all studied groups.	

List of Figures

Figure 1	Standard curve of total IgE	72
Figure 2	Standard curve of specific IgE	73
Figure3	Number of cases with repeated chest infection among the 4 studied groups	78
Figure 4	Number of cases with other cow milk allergy symptoms among the 4 studied groups.	80
Figure 5	Number of cases with family history of allergy among the 4 studied groups	82
Figure 6	Number of cases with regular maternal cow milk intake among the 4 studied groups.	84
Figure 7	Comparison between the selected cases from 4 studied groups as regards positive total IgE level.	88
Figure 8	Comparison between the selected cases from 4 studied groups as regards positive specific IgE level.	90
Figure 9	Relation between specific IgE and age of introduction of solid food	95

LIST OF ABBREVIATIONS

AA Arachidonic acid

ADP Adenosine diphosphate
AMP Adenosine monophosphate

AOM Acute otits media

B Borrelia

C3 Complement 3
C4 Complement 4

CDP Cytidine diphosphate

ChT ChitotriosidaseCMA Cow's milk allergyCMP Cow milk protein

CMPA Cow milk protein allergy

CMPI Cow milk protein intolerance

CMPSE Cow's milk protein sensitive enteropathy

CMV Cytomegalovirus

CPS Capsular polysaccharide
DBM Diabetic breast milk

DBPCFC Double blind placebo- controlled

Oral food challenge

DHA Docosahexaenoic acidEGF Epidermal growth factor

FAA Free amino acid

FAs Fatty acids
Fe Lactoferrin

FIL Feedback inhibitor of lactation

GALT Gut- associated lymphoid tissues

GDP Guanosine diphosphate
GMP Guanosine monophosphate

GOR Gastro-oesophageal reflux

H Haemophilus

HAV Hepatitis A virus

HBIg Hepatitis B immunoglobulin

HBV Hepatitis B virusHD Hodgkin's disease

HDL High density lipoprotein

HIV Human immunodeficiency virus
HTLV Human T-cell lymphotropic virus
ICAM Intracellular adhesion molecule

IGF Insulin-like growth factorIMP Inosine monophosphate

LC-PUFA Long chain polyunsaturated fatty acid

LDL Low density lipoprotein

LFA-1 Lymphocyte function-associated antigen-1

M Mycobacterium

MHC Major histocompitability complex moleculeMIF Macrophage migration inhibitory factor

N Neisseria

NGF Nerve growth factor
NPN Non protein nitrogen

PHA Potentially hazard associatedODM Offspring of diabetic mothersPCM Protein calorie malnutrition

PHs Protein hydrolysates

PLs Phospholipids

PMNL Polymorphonuclear leukocytes
RSV Respiratory syncytial virus

SECP Serum eosinophil cationic protein

SPT Skin Prick Tests

T Treponema

TC Total cholesterol

TGF Transforming growth factor

TGs Triglycerides

UDP Uridine diphosphate
 UMP Uridine monophosphate
 UTI Urinary tract infection
 VZV Varicella-zoster virus

WAIS Wechsler Adult Intelligence Scale

WCM Whole cow's milk

Aim of the work

The aim of the study is to delineate the role of different feeding patterns in the first six months on the development of allergic tendency in infants.

Appendix (2): Data of the selected 22 BF infants

grp	No	Sex	Social	rchestinf	PHallergy	G.I.T.	R.S	C.V.S	FHallergy	FHchest	Wtmp	Length	НС	RBC	НВ	WBC	PLT	TIgE	SIgE	Stool
BF	1	2	Low	1	0	0	0	0	1	0	100	94.6	97	5.79	15.8	12	332	8.5	0.7	Giardia
BF	2	1	Low	1	0	0	0	0	1	0	99	98	95.5	4.00	12	10.8	250	18	45	normal
BF	3	1	high	1	0	1	0	0	0	0	98	100	125	6.19	14	13	500	17	17	Ameba
BF	4	1	Low	1	0	0	0	0	0	0	79.4	93.3	95.8	3.38	11	7	530	46	0.3	normal
BF	5	1	Low	1	0	0	0	0	1	0	83.8	94.8	93.6	3.91	7.9	5.6	589	17	4	normal
BF	6	1	high	1	0	0	0	0	0	0	115.3	84.9	98.1	3.04	7.8	7.6	200	30	0.7	normal
BF	7	1	Low	1	0	0	0	0	1	0	96.5	93.0	96.6	5.5	13	11.8	450	19	16	Oxyoris
BF	8	1	Low	1	0	0	0	0	0	0	83.3	95.5	93.6	3.38	9	6.7	525	52	2.5	normal
BF	9	1	Low	1	0	1	0	0	0	0	94.3	92.8	94	4	10	7.0	400	8	0.7	normal
BF	10	1	Low	1	0	0	0	0	1	1	102	100	95	3.95	10.4	9.9	959	5	0.7	Ameba
BF	11	1	high	1	0	0	0	0	0	0	65.3	84.4	91.9	2.29	6.9	10	163	17	35	normal
BF	12	2	Low	1	0	0	0	0	1	0	110	94.7	98	6.01	16	11.98	335	8.7	0.7	Giardia
BF	13	2	high	1	0	0	0	0	1	0	98	99	96.5	4.05	12	10.9	260	19	43	normal
BF	14	2	Low	1	0	0	0	0	0	0	98	101	126	6.31	14	14	510	18	20	Ameba
BF	15	1	Low	1	0	1	0	0	0	0	80	94.3	96.8	3.40	13	8	540	47	0.3	normal
BF	16	1	Low	1	0	0	0	0	1	0	83.8	95.8	93.7	3.96	7.8	5.7	570	18	5	normal
BF	17	1	Low	1	0	0	0	0	0	0	120	86	98.7	3.05	7.5	7.7	200	31	0.7	normal
BF	18	1	high	1	0	0	0	0	1	0	96.5	94.	97	5.6	14	11.7	455	18	16	Oxyoris
BF	19	1	Low	1	0	1	0	0	0	0	85	96.3	93.6	3.39	8.5	6.7	528	54	2.7	normal
BF	20	1	high	1	0	0	0	0	0	0	94.9	94.8	96	5	10	8	405	7	0.9	normal
BF	21	2	high	1	0	0	0	0	1	1	105	84.9	96	3.97	11	10	700	3	0.9	Ameba
BF	22	1	Low	1	0	0	0	0	0	0	65.3	93.0	92.3	2.30	7	11	164	20	30	normal

Appendix (3): Data of the selected 24 CM.

grp	No	Sex	Age	Social	rchestinf	PHallergy	G.I.T.	R.S	C.V.S	FHallergy	FHchest	Wtmp	Length	НС	RBC	НВ	WBC	PLT	TIgE	SIgE	Stool
CM	1	2	6	Low	1	0	1	0	0	1	0	89.7	96.9	96.4	3.78	9.4	5.1	388	12	1.5	Normal
CM	2	1	6	middle	1	0	0	0	0	0	0	89.7	68.5	95.8	3.43	10.3	9.7	838	7	0.3	Normal
CM	3	2	9	middle	1	0	0	0	0	0	0	98.9	96.7	99	4.22	13.9	11.3	211	11	2	Normal
CM	4	1	9	Middle	1	1	0	1	0	0	0	94.9	100	90.8	3.92	11.3	9.9	339	210	16	Normal
CM	5	1	6	Low	1	0	0	0	0	0	0	88.9	75.4	89.5	4.96	10.5	26	626	12	3	Normal
CM	6	1	6	Low	1	0	0	0	0	1	0	108	97.8	100	4.07	7.9	4.5	348	19	35	Normal
CM	7	2	9	Low	1	0	0	0	0	0	0	81.4	83.7	97.2	3.79	10.7	9.7	392	16	2.5	Normal
CM	8	2	9	Low	1	0	1	0	0	0	1	101	95.9	88.3	4.36	7.2	17.3	237	14	2.5	Normal
CM	9	2	9	Low	1	0	0	0	0	1	1	98	95.2	92.7	3.06	7.9	4.5	562	17	0.2	Normal
CM	10	1	8	Low	1	0	1	0	0	0	0	61	85.1	93.1	4.56	15.6	11	429	8	0.7	WBC
CM	11	1	9	Low	1	0	0	0	0	0	0	73.8	86.8	95.5	4.31	9.5	8.8	420	18	1.5	Free
CM	12	1	9	Low	1	0	0	0	0	1	1	102	93.4	100	4.30	11	13.8	440	13	1.5	Normal
CM	13	2	6	Low	1	0	1	0	0	1	0	89.7	97	96.6	3.75	9.7	5.2	380	13	1.6	Normal
CM	14	1	6	High	1	0	0	0	0	0	0	88.7	68.5	95.9	3.43	10	9.8	835	8	0.3	Normal
CM	15	2	9	middle	1	0	0	0	0	0	0	99.9	97	100	4.23	14	11	210	11	3	Normal
CM	16	1	9	Middle	1	1	0	0	0	0	0	94.	101	90.9	3.93	11.3	10	340	200	16	Normal
CM	17	1	6	Low	1	0	0	0	0	0	0	88.9	75.4	90	4.97	10.5	26	629	12	4	Normal
CM	18	1	6	Middle	1	0	0	0	0	1	0	107	97.	100	4.00	8	4.5	350	19	34	Normal
CM	19	2	9	Low	1	0	0	0	0	0	0	81.8	84.7	97.2	3.78	10.9	10	393	15	2.5	Normal
CM	20	2	9	Low	1	0	1	0	0	0	1	103	95.9	88.3	4.48	7.7	17	238	17	3	Normal
CM	21	2	9	Low	1	0	0	0	0	1	1	97	95.2	92.9	3.07	7.8	4.5	564	19	0.2	Normal
CM	22	1	8	high	1	0	1	0	0	0	0	64	85.1	94.1	4.60	15.5	11.8	430	8	0.7	WBC
CM	23	1	9	Low	1	0	0	0	0	0	0	73.8	86.8	95.5	4.31	9.8	8.9	430	18	1.5	Free
CM	24	1	9	Low	1	0	0	0	0	1	1	103	93.4	100	4.40	11	13.8	440	17	1.6	Normal

Appendix (4): Data of the selected 22 AF.

grp	No	Sex	Age	Social	rchestinf	PHallergy	G.I.T.	R.S	C.V.S	FHallergy	FHchest	Wtmp	Length	HC	RBC	HB	WBC	PLT	TIgE	SIgE	Stool
AF	1	1	6	Middle	1	0	1	0	0	1	1	89.7	88.8	93.6	4	11.4	11.3	400	20	36	Normal
AF	2	2	6	Low	1	0	0	0	0	0	0	124	100	95	3.2	10	13.8	600	19	25	Normal
AF	3	2	9	Low	1	0	0	0	0	0	0	58.2	83.3	90.4	3.73	9.7	12	517	3	0.7	Normal
AF	4	2	9	Low	1	1	0	0	0	1	1	93.1	85.1	106	3.5	8.9	10.8	359	17	0.7	Normal
AF	5	2	6	middle	1	0	0	0	0	0	0	97.2	81.5	97.1	4.18	10.9	6.6	432	8	0.5	Normal
AF	6	2	7	Low	1	0	1	0	0	0	0	118	104	103	3.9	11	7	350	10	0.8	Normal
AF	7	2	9	Low	1	0	0	0	0	1	1	81.4	87.8	97.2	4.13	10.9	10	346	16	3.5	Normal
AF	8	2	8	Low	1	0	0	0	0	1	1	75	84.2	91.2	3.43	5.6	8	724	10	0.3	Normal
AF	9	2	6	Low	1	0	0	0	0	0	0	101	92.3	97.1	2.25	9.1	9.4	371	16	2	Normal
AF	10	2	8	Low	1	0	0	0	0	0	0	93.7	97.7	98.8	5.17	12	8	307	8	0.8	Normal
AF	11	1	9	Low	1	0	0	0	0	0	0	82.2	100	81	5.14	8.1	25	398	25	2	Normal
AF	12	1	6	Middle	1	0	1	0	0	1	1	89.8	88.9	93.7	4	11.4	11.4	410	23	37	Normal
AF	13	2	7	Low	1	0	0	0	0	0	0	128	102	95.3	3.3	10	13.9	603	19	24	Normal
AF	14	1	9	High	1	0	0	0	0	0	0	58.4	83.4	90.2	3.83	9.8	12	517	4	0.7	Normal
AF	15	2	9	Low	1	1	0	0	0	1	1	93.6	86.1	105	3.5	8.9	10.8	360	16	0.7	Normal
AF	16	2	6	middle	1	0	0	0	0	0	0	97.2	81.5	97.6	4.17	11.1	6.5	432	6	0.5	Normal
AF	17	2	6	Low	1	0	1	0	0	0	0	120	105	104	3.9	11	8	353	10	0.6	Normal
AF	18	1	9	Low	1	0	0	0	0	1	1	81.4	88.0	97.4	4.14	10.9	10	346	16	3.5	Normal
AF	19	2	8	Middle	1	0	0	0	0	1	1	77	85.2	92.1	3.43	5.8	8	700	10	0.3	Normal
AF	20	2	7	Low	1	0	0	0	0	0	0	102	924	97.1	2.34	9.00	9.6	371	17	2	Normal
AF	21	2	8	Low	1	0	0	0	0	0	0	93.8	97.9	99.0	5.17	12.3	9	308	9	0.8	Normal
AF	22	1	9	Low	1	0	0	0	0	0	0	83.2	103	80.9	5.13	8	24	400	25	3	Normal

Appendix (5): Data of the selected 24 MF.

grp	No	Sex	Age	Social	rchestinf	PHallergy	G.I.T.	R.S	C.V.S	FHallergy	FHchest	Wtmp	Length	НС	RBC	НВ	WBC	PLT	TIgE	SIgE	Stool
MF	1	1	8	Low	1	0	1	0	0	0	0	79.5	88.5	101	4.26	9.1	13.5	903	17	0.1	Normal
MF	2	1	9	Low	1	0	0	0	0	1	1	73.8	92.1	93.3	4.46	11.7	10.8	436	16	0.8	Normal
MF	3	1	8	Low	1	0	0	0	0	0	0	68.8	90.3	89.8	3.39	8	4.7	428	12	1.5	Normal
MF	4	2	7	Middle	1	0	0	0	0	0	0	79.6	96.6	94.1	4.88	13.2	15.9	252	10	0.1	Normal
MF	5	1	9	Low	1	0	0	0	0	0	0	89.6	93.2	108	3.79	9	11	404	16	0.3	Normal
MF	6	2	6	Middle	1	0	1	0	0	1	1	70.5	77.6	90.6	3.2	9.1	6.8	568	10		Normal
MF	7	1	9	Middle	1	0	0	0	0	1	1	99	90.7	100	4.04	11	12.2	400	50	40	Normal
MF	8	1	6	Low	1	0	1	0	0	1	1	89.7	98.7	95.3	3.23	11	7	336	12	0.3	Normal
MF	9	2	8	middle	1	0	1	0	0	1	1	73.8	99.5	96.2	4	10	11	340	120	12	Normal
MF	10	1	9	Low	1	1	0	0	0	0	0	102	89.4	98.1	4.8	14	3.4	154	3.5	0.2	Giardia
MF	11	1	9	Low	1	0	0	0	0	1	0	87.5	95.9	97.7	5.07	10.4	9.7	355	16	0.7	Normal
MF	12	2	9	Low	1	0	0	0	0	0	0	116	94.5	96.5	5.75	10.6	11	245	22	2	Normal
MF	13	1	8	Low	1	0	1	0	0	0	0	79.7	89.5	100	4.36	9.5	13.6	900	17	0.2	Normal
MF	14	2	9	hight	1	0	0	0	0	1	1	74.8	93.1	94.3	4.47	12.7	10.9	440	16	0.7	Normal
MF	15	1	8	Low	1	0	0	0	0	0	0	68.8	90.4	90.0	3.40	8	4.7	428	12	1.5	Normal
MF	16	2	7	Middle	1	0	0	0	0	0	0	79.5	96.6	95.2	4.99	13.2	16.9	260	10	0.3	Normal
MF	17	1	9	Low	1	0	0	0	0	0	0	90	93.5	109	3.80	9	16.1	404	16	0.3	Normal
MF	18	1	6	Middle	1	0	1	0	0	1	1	71	77.6	90.8	4.80	9.4	6.9	578	10		Normal
MF	19	1	9	Low	1	0	0	0	0	1	1	100	90.7	101	4.04	12	12.2	401	50	43	Normal
MF	20	2	6	Low	1	0	1	0	0	1	1	89.9	98.8	95.5	3.23	12	8	338	12	0.3	Normal
MF	21	2	8	Middle	1	0	1	0	0	1	1	74.8	99.9	96.5	5	10	15	340	120	13	Normal
MF	22	2	9	Low	1	1	0	0	0	0	0	111	90.0	98.4	4.8	13.9	3.2	155	3.5	0.2	Giardia
MF	23	1	9	Middle	1	0	0	0	0	1	0	87.7	95.9	97.8	5.07	10.5	9.8	355	16	0.7	Normal
MF	24	2	9	Low	1	0	0	0	0	0	0	118	95.5	96.9	5.95	10.8	12	235	22	2	Normal