ROLE OF SOME NATURAL ANTIOXIDANTS AGAINST EFFECT OF CADMIUM IN THYROID GLAND

By Omyma Kamel Radwan Abou Zeed B.Sc.Science (Entomology-Chemistry), Ain Shams University, 1982

A Thesis Submitted in Partial Fulfillment of The Requirement the Master Degree in Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies & Research Ain Shams University

ROLE OF SOME NATURAL ANTIOXIDANTS AGAINST EFFECT OF CADMIUM IN THYROID GLAND

By
Omyma Kamel Radwan Abou Zeed
B.Sc. Science (Entomology-Chemistry), Ain Shams
University, 1982

A Thesis Submitted in Partial Fulfillment
of
The Requirement the Master Degree
in
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Mohamed A. Al Khafif

Professor of Biochemistry, Institute of Environmental Studies & Research, Department of Medical Sciences, Ain Shams University.

2-Assistant Prof. Dr. Suzan F.I. El- Sisi

Assistant Professor of Physiology, National Organization for Drug Control and Research NODCAR.

APPROVAL SHEET

ROLE OF SOME NATURAL ANTIOXIDANTS AGAINST EFFECT OF CADMIUM IN THYROID GLAND

 $\mathbf{B}\mathbf{v}$

Omyma Kamel Radwan Abou Zeed B.Sc. Science (Entomology-Chemistry), Ain Shams University, 1982

This Thesis Towards a Master Degree in Environmental Sciences Has Been Approved by:

Name

Signature

Prof. Dr. Raouf Mohammed Mahmoud El-Allawy.

Professor of Biochemistry, National Organization for Drug Control and Research NODCAR.

Prof. Dr. Tahany Mahmoud Maharem.

Professor of Biochemistry, Faculty of Science, Ain Shams University.

ACKNOWLEDGEMENT

I wish to express my deep gratitude and appreciation to **Prof. Dr. Mohamed A. Al Khafif,** Professor of Biochemistry, Institute of Environmental Studies & Research, Department of Medical Sciences, Ain Shams University for his kind assistance, valuable guidance, comments and unlimited sincere help during supervision and revising this thesis.

I would also like to thank **Dr. Suzan F.I. El-Sisi,** Assistant Professor of Physiology, National Organization for Drug Control and Research NODCAR, for suggesting the problem, planning the research work, revising the test and her persistent care throughout this work.

Thanks to **Dr. Adel Bakeer Kholoussy**, Professor of Pathology, Cairo University, for the histopathological part.

A special word of thanks and appreciation to all members of my department especially Prof. Dr. Aida M.S. and Prof. Dr. Salwa T.M. Professors of Biochemistry in NODCAR, for their support & kind guidance during the course of this study.

My sincere thanks for Dr. Samy Ahmed El-Behairy, Assistant Professor of Food Sciences in NODCAR for his kind advice and encouragement.

Last, but not least, to all members of NODCAR library, my husband and my sons, whom helped me and made this work possible, I owe my sincere gratitude.

Omyma Kamel Radwan.

CONTENTS

	Page
Introduction	I
Review of Literature	1
Materials and Methods	28
Results	40
Discussion	. 77
Summary & Conclusion & Recommendations	93
References	96
Arabic Summary	(1-3)

List of Tables	Page
• Table (1): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of blood SOD (U/gHb) in female rats.	44
• Table (2): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of liver SOD (U/g wet tissue) in female rats.	45
• Table (3): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of thyroid SOD (U/mg wet tissue) in female rats.	46
• Table (4): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of plasma MDA (nmol/ml) in female rats.	47
• Table (5): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of liver MDA (nmol/g wet tissue) in female rats.	48
• Table (6): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of thyroid MDA (nmol/mg wet tissue) in female rats.	49
• Table (7): Prophylactic effect of Vitamin E & C and taurine against Cd toxicity of Plasma GSH (µmol/100 ml) in Female rats.	50
• Table (8): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of liver GSH (μ mol/g fresh tissue) in female rats.	51
• Table (9): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of thyroid GSH (nmol/mg fresh tissue) in female rats.	52

List of Tables	Page
• Table (10): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of plasma GSSG (µmol/100ml) in female rats.	53
• Table (11): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of liver GSSG (µmol/g tissue) in female rats.	54
• Table (12): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of thyroid GSSG (nmol/mg fresh tissue) in female rats.	55
• Table (13): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of plasma T ₃ (ng/ml) in female rats.	56
• Table (14): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of plasma T ₄ (nmol/L) in female rats.	57
• Table (15): Prophylactic effect of vitamin E & C and taurine against Cd toxicity of plasma TSH (nIU/L) in female rats.	58
• Table (16): The effect of vitamin E & C and taurine treatment against Cd toxicity of SOD in blood (U/gHb), liver (U/g wet tissue) and thyroid tissues (U/mg wet tissue) in female rats.	62
• Table (17): The effect of vitamin E & C and taurine treatment against Cd toxicity of MDA in plasma, (nmol /ml), liver (nmol /g wet tissues), and thyroid tissues (nmol/mg wet tissue) in female rats.	63

List of Tables	Page
• Table (18): The effect of vitamin E & C and taurine treatment against Cd toxicity of GSH in plasma (nmol/mg fresh tissue), liver (µmol/g fresh tissues), and thyroid tissues (µmol/mg fresh tissues) in female rats.	64
• Table (19): The effect of vitamin E & C and taurine treatment against Cd toxicity of the level of GSSG in plasma(µmol/100ml), liver (µmol/g fresh tissue), and thyroid tissue (nmol/mg fresh tissue) in female rats.	65
• Table (20): The effect of vitamin E & C and taurine treatment against Cd toxicity on the level of plasma T ₃ (ng/ml), T ₄ (nmol/L) & TSH (nIu/L) in female rats.	66

List of Figures	Page
• Fig. (1): % Changes from control of the level of blood SOD in female rats.	44
• Fig. (2): % Changes from control of the level of liver SOD in female rats.	45
• Fig. (3): % Changes from control of the level of thyroid SOD in female rats.	46
• Fig. (4): % Changes from Cd control group of the level of SOD in RBCs, liver and thyroid tissues in female rats.	47
• Fig. (5): % Changes from control of the level of plasma MDA in female rats.	48
• Fig. (6): % Changes from control of the level of liver MDA in female rats.	49
• Fig. (7): % Changes from control of the level of thyroid MDA in female rats.	50
• Fig. (8): % Changes from Cd control group of the level of MDA in plasma, liver and thyroid tissues in female rats.	51
• Fig. (9): % Changes from control of the level of plasma GSH in female rats.	52
• Fig. (10): % Changes from control of the level of liver GSH in female rats.	53
• Fig. (11): % Changes from control of the level of thyroid GSH in female rats.	54

List of Figures	Page
• Fig. (12): % Changes from Cd control group of the level of GSH in plasma, liver and thyroid tissues in female rats.	55
• Fig. (13): % Changes from control of the level of plasma GSSG in female rats.	56
• Fig. (14): % Changes from control of the level of liver GSSG in female rats.	57
• Fig. (15): % Changes from control of the level of thyroid GSSG in female rats.	58
• Fig. (16): % Changes from Cd control group of the level of GSSG in plasma, liver and thyroid tissues in female rats.	62
• Fig. (17): % Changes from control of the level of plasma T ₃ in female rats.	63
• Fig. (18): % Changes from control of the level of plasma T ₄ in female rats.	64
• Fig. (19): % Changes from control of the level of plasma TSH in female rats.	65
• Fig. (20): % Changes from Cd control group of the level of plasma T ₃ , T ₄ , and TSH in female rats.	66
• Fig. (A1): Thyroid gland of –ve control group.	70
• Fig. (A2): Magnification of (A1).	70
• Fig. (A3): Thyroid gland of vitamin control group.	70
• Fig. (A4): Magnification of (A3).	70
• Fig. (A5): Thyroid gland of taurine control group.	70

List of Figures	Page
• Fig. (A6): Magnification of (A5).	70
• Fig. (B1): Thyroid gland of Cd control group.	72
• Fig. (B2): Magnification of (B1).	72
• Fig. (B3): Thyroid gland of Cd control group.	72
• Fig. (B4): Magnification of (B3).	72
• Fig. (B5): Thyroid gland of Cd control group.	72
• Fig. (B6): Magnification of (B5).	72
• Fig. (C1): Thyroid gland of vitamin prophylactic group.	74
• Fig. (C2): Magnification of (C1).	74
• Fig. (C3): Thyroid gland of taurine prophylactic group.	74
• Fig. (C4): Magnification of (C3).	74
• Fig. (D1): Thyroid gland of vitamin curative group.	76
• Fig. (D2): Magnification of (D1).	76
• Fig. (D3): Thyroid gland of taurine curative group.	76
• Fig. (D4): Magnification of (D3).	76

LIST OF ABBREVIATIONS

• 5'D-I Hepatic 5'-monodeiodinase.

• CAT Catalase.

• CMC Caboxymethylcellulose.

• CNS Central nervous system.

• EPA Environmental Protection Agency.

• GSH Reduced glutathione.

• GSH-Px Glutathione peroxidase.

• GSH-R Glutathione reductase.

• GSSG Oxidized glutathione.

• LPO Lipid peroxidation.

• MDA Malondialdhyde.

• MT Metallothionine.

• ROS Reactive oxygen species.

Se Selenium.

SOD Superoxide dismutase.

• TBARS Thiobarbituric acid reactive substances.

• TSH Thyroid stimulating hormone.

ABSTRACT

Role of some natural antioxidants against effect of cadmium in thyroid gland; Omyma Kamel Radwan Abou Zeed; M.Sc. Thesis, Institute of Environmental Studies and Research; Basic Environmental Sciences.

Cadmium (Cd) is a very toxic heavy metal and an important environmental pollutant in the soil, water, air, food and in cigarette smoke. Cd causes poisoning and oxidative damage in various tissues. Thyroid hormones are associated with the oxidation status of the organism. The present study aimed to investigate the oxidant and antioxidant status in cadmium-induced thyroid dysfunction in rats and examine the effect of natural antioxidants (vitamin E & C and taurine) supplementation on this experimental model, which comprised two separate experiments. The first one was designed to study the prophylactic effect of the tested antioxidants against cadmium toxicity in plasma, liver and thyroid tissues of adult female albino rats. The second experiment was designed to study the curative effect of the tested antioxidants on Cd intoxicated rats. The first experiment was extended for 30 days. Animals were divided into six groups. G1, normal control group. G2, vitamin control group that received daily 5, 10 mg/kg of vit. E & C respectively. G3, taurine control group that received daily 500 mg/kg of taurine. G4, Cd control group that received daily 15 mg/kg of CdCl₂. G5, vitamin prophylactic group that received vit. E & C one week before Cd administration and along with Cd for 30 days. G6, taurine prophylactic group that received taurine one week before Cd administration and along with Cd for 30 days. In the second experiment pretreated Cd intoxicated rats (for 30 days) were subdivided into three groups. G1, Cd control group that received stock diet without Cd administration. G2, vitamin treated group that received a combined dose of vitamin E & C. G3, taurine treated group that received taurine. The administration of the test compounds lasted for 15 days. The results showed that, plasma, liver and thyroid tissue lipid peroxide product MDA levels were increased while plasma, liver and thyroid reduced glutathione GSH and Superoxide dismutase SOD levels were decreased by Cd toxicity, inducing a state of oxidative stress. Plasma triiodothronine T₃ & thyroxine T₄ levels were decreased, while a slight increase in thyroid stimulating hormone TSH level, were induced by Cd toxicity, showing a state of hypothyroidism, which could be attenuated by supplementation of a combined dose of vit. E&C as well as taurine, showing amelioration in thyroid hormones levels, thyroid tissue and antioxidant status

(GSH&SOD), resulting in promotion of the thyroid activity, in addition to reducing LPO which diminished the oxidative stress. Based on these results, administration of a combined dose of vit. E&C as well as taurine daily for persons at high risk of Cd contamination is strongly recommended.

<u>Key Words:</u> Cadmium, vit. E, vit. C, taurine, thyroid gland, hypothyroidism, T₃, T₄, TSH, SOD, GSH, GSSG, MDA, antioxidants, oxidative stress, lipid peroxidation (LPO).

INTRODUCTION

Pollution of the environment with toxic metals has increased dramatically since the beginning of the industrial revolution. Humans interact with their environments on a daily basis and, as a consequence, they are exposed to a broad spectrum of pollutants. Among these pollutants cadmium (Cd) is considered as one of the most toxic substances in the environment due to its wide range of organ toxicity and long elimination half life amounted to 20-30 years (Beytut et al., 2003, Raquel et al., 2006). Cd is of particular concern because it accumulates in the human body and is linked with a number of health problems (Kelly, 1999). Accumulation of Cd in several organs induces systemic DNA damage. These organs protect themselves by inducting detoxifying mechanisms against hydrogen peroxides production such as induction of endogenous antioxidants in these organs (Valverde et al., 2000). Studies showed that Cd accumulates in thyroid, kidney, liver and pancreas, all areas that seem to be involved in thyroid diseases (Sato and Takizawa, 1992). When cadmium is absorbed, it circulates in erythrocytes or bound to albumin. In the liver, it can induce and bind to metallothionine (MT) (Lyn Patrick, 2003). Falnoga et al., (2000) found that Cd also accumulates in thyroid gland more than the most others areas of the body, indicating that Cd plays a pivotal role in thyroid function. Furthermore, Blazka and Shaikh (1991) reported that estradiol directly increases the accumulation of Cd in liver and kidney tissues, thus Cd accumulates in female tissues more than male tissues and have greater thyroid diseases. One of the basic mechanisms involved in Cd toxicity might be via production of reactive oxygen species (ROS) which are