PRODUCTION OF ALTERNAN BY FERMENTATION USING LOCAL BACTERIAL ISOLATES

BY

ENAS ESMAIL MAHMOUD RAAFAT

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2000

A thesis submitted in partial fulfillment $$\operatorname{\textsc{of}}$$ the requirements for the degree of

MASTER OF SCIENCE

In
Agricultural Science
(Agricultural Microbiology)

Department of Agricultural Microbiology
Faculty of Agriculture
Ain Shams University

Approval Sheet

PRODUCTION OF ALTERNAN BY FERMENTATION USING LOCAL BACTERIAL ISOLATES

BY ENAS ESMAIL MAHMOUD RAAFAT

B.Sc. Agric. Sc. (Agriculture Microbiology), Ain Shams University, 2000

This t	hesis for M.Sc. degree	has been appro	ved by:			
	Dr. Fawkia M. El-bei Prof. of Microbiology,			Sha	ams Univ	/ .
]	Fatma R. Nassar Prof. of Agriculture Shams Univ.			of	Agric.,	Ain
]	Dr. Hemmat M. Abde Prof. of Agriculture Shams Univ.	_		of	Agric.,	Ain
]	Dr. Rawia F. Gamal . Prof. of Agriculture Shams Univ.			of	Agric.,	Ain

Date of Examination 28 / 06 / 2006

PRODUCTION OF ALTERNAN BY FERMENTATION USING LOCAL BACTERIAL ISOLATES

BY

ENAS ESMAIL MAHMOUD RAAFAT

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2000

Under the supervision of:

Prof. Dr. Rawia F. Gamal

Prof. of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. of Agric., Ain Shams Univ. (Principal Supervisor)

Prof. Dr. Hemmat M. Abdelhady

Prof. of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. of Agric., Ain Shams Univ.

Prof. Dr. Sohir A. I. Nasr

Prof. of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. of Agric., Ain Shams Univ.

ABSTRACT

ENAS ESMAIL MAHMOUD RAAFAT "Production of Alternan by Fermentation Using Local Bacterial Isolates". Unpublished Master of Science Thesis, Ain Shams University, Faculty of Agriculture, Department of Agricultural Microbiology, 2006.

Alternan is a unique branched glucan produced by fermentation with *Leuconostoc mesenteroides*. Alternan might be used as a low or non-caloric food additive, filler and bulking agent for food products as well as in inks, adhesives, cosmetic creams or ointments. Therefore, this investigation was designed to study the production of alternan by fermentation.

In the present study, a number of 75 grayish white pigmented gram positive spherical in pairs and chain isolates were collected and tested for alternan production. Only seven isolates were selected as high efficient alternan producing bacteria and completely identified as *L. mesenteroides*. In a series of experiments on alternan production, modified **Raemaekers and Vandamme** medium containing 120 gL⁻¹ sucrose was recommended, with incubation for 22 hrs at 30°C in shaking flasks at 200 rpm as a batch culture.

Different gamma radiation doses were applied to produce some mutants from each local parent strain capable to increase alternan and dextran production about 1.93& 1.82 fold by local L. mesenteroides M_{m6} mutant and L. mesenteroides C_{m6} , respectively.

Biological activity of alternan producing *Leuconostoc* strains was studied in shake flask as a batch culture. In batch bioreactor culture, the effect of agitation speeds on alternan production by *L. mesenteroides* M_{m6} during 28 hrs fermentation period was studied and comparing with that obtained by

reference standard *L. mesenteroides* NRRL B-1355 strain. This technique increased the produced alternan, by 2.66 fold as compared to that produced by batch culture technique.

Key words: Alternan, *Leuconostoc mesenteroides*, Shake flasks, Bioreactor, Batch culture, Dextran, Alternan parameters, Dextran parameters.

ACKNOWLEDGMENT

Praise and thanks be to god, the most merciful for assisting and directing me to the right way.

Deepest gratitude to Principal Supervisor **Prof. Dr. Rawia F. Gamal**, Prof. of Agric. Microbiology, Faculty of Agric., Ain Shams University, for suggesting the research problem, and for valuable advices during the preparation of the manuscript.

My grateful thanks are extended to **Prof. Dr. Hemmat M. Abdelhady,** Prof. of Agric. Microbiology and **Prof. Dr. Sohir A. I. Nasr,** Prof. of Agric. Microbiology, Fac. of Agric., Ain Shams Univ., for their kind help and precious advices throughout the study.

I am grateful to **Dr. Abd El-Monem S. Bashandy** Assist. Prof. of Microbiology, National Center for Radiation Research and Technology, Atomic Energy Authority, for his invaluable help so necessary to the accomplishment of the study.

Thanks are extended to the staff of the Department of Agric. Microbiology and the Bio-fertilizer unit, Faculty of Agriculture, Ain Shams Univ. for providing facilities, kind help and encouragement.

Deepest thanks are due to my family for their continuous help and encouragement.

PRODUCTION OF ALTERNAN BY FERMENTATION USING LOCAL BACTERIAL ISOLATES

BY

ENAS ESMAIL MAHMOUD RAAFAT

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2000

Under the supervision of:

Prof. Dr. Rawia F. Gamal

Prof. of Agric. Microbiology, Department of Agric. Microbiology, Fac. of Agric., Ain Shams Univ.

Prof. Dr. Hemmat M. Abd El-Hady

Prof. of Agric. Microbiology, Department of Agric. Microbiology, Fac. of Agric., Ain Shams Univ.

Prof. Dr. Sohir A. I. Nasr

Prof. of Agric. Microbiology, Department of Agric. Microbiology, Fac. of Agric., Ain Shams Univ.

Dr. Abd El-Monem S. Bashandy

Assist. Prof. of Microbiology, National Center for Radiation Research and Technology, Atomic Energy Authority.

CONTENTS

	Page
LIST OF TABLES	iv
LIST OF FIGURS	xiv
ABBREVIATIONS	xix
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Alternan producing bacteria	3
2.2. Alternan	5
2.3. Chemical structure of alternan	5
2.4. Alternan synthesize	7
2.5. Alternansucrase	8
2.6. Alternan properties	9
2.7. Applications of alternan	10
2.8.Biodegradation of alternan	11
2.9. Factors affecting alternan production	13
2.9.1. Nutritional requirements	13
2.9.1.1. Sugars	13
2.9.1.2. Sucrose concentrations	14
2.9.1.3. Nitrogen sources	14
2.9.1.4. Tween 80	15
2.9.1.5. Salts solution	16
2.9.2. Environmental factors	17
2.9.2.1. Incubation temperature	17
2.9.2.2. Initial pH	18
2.9.2.3. Aeration	19
2.10. The fermentation processes	19
2.11. Alternan precipitation	21
2.12. Mutations and mutants	22
2.12.1. Strain stability and storage of mutants	25
2.13. Radiation	26
2.13.1.Types of radiation	27
2.13.1.1. Non ionizing radiation	27
2.13.1.2. Ionizing radiation	27

2.12.2 Description of mediation	27
2.13.2. Dose units of radiation	20
2.13.3. The effect of ionizing radiation on microorganisms	28
2.13.4. Dose survival curves	29
3. MATERIALS AND METHODS	31
3.1. Samples	31
3.2. Bacteria used	31
3.3. Media used	31
3.4. Isolation of alternan producing bacteria	35
3.5. Maintenance of cultures	35
3.6. Standard inoculum	35
3.7. Selection of alternan producing isolates	36
3.8. Identification of alternan producing bacteria	36
3.9. Batch shake flask experiments	37
3.9.1. Nutritional factors affecting the alternan	
production	37
3.9.1.1. Selection of suitable medium for alternan	
production	37
3.9.1.2. Carbon sources	38
3.9.1.3. Sucrose concentrations	38
3.9.1.4. Nitrogen sources	38
3.9.1.5. Carbon to nitrogen ratio (C/N ratio)	39
3.9.1.6. Tween types	39
3.9.1.7. Tween 80 concentrations	39
3.9.1.8. Ascorbic acid	39
3.9.1.10. Salts solution	40
3.9.2. Environmental factors affecting the alternan	
production	40
3.9.2.1. Temperature	40
3.9.2.2. pH	40
3.9.2.3. Agitation speeds	41
3.9.3. Biological activity of alternan producing bacteria	41
3.9.4. Physical factors affecting the alternan production	42
3.9.4.1. Gamma radiation	42

3.9.4.2. D ₁₀ value	42
3.9.4.3. Mutant production	43
3.10. Effect of different agitation speeds on alternan	
production in batch bioreactor culture	43
3.11. Chemical determinations	44
3.11.1. Determination of alternan and dextran	- 4
3.11.2. Total sugars	4
3.12. Calculations	4
4. RESULTS AND DISCUSSION	4
4.1. Isolation and selection of alternan producing bacteria	4
4.2. Selection of suitable medium for alternan production	5
4.3. Factors affecting alternan production using shake	
flasks as a batch culture	5
4.3.1. Effect of nutritional requirements	5
4.3.1.1. Carbon sources	5
4.3.1.2. Sucrose concentrations	6
4.3.1.3. Nitrogen sources	7
4.3.1.4. Carbon to nitrogen ratio (C/N ratio)	7
4.3.1.5. Tween types and concentrations	8
4.3.1.6. Ascorbic acid concentrations	Ç
4.3.1.7. Salts solution volumes	1
4.3.2. Effect of environmental factors	1
4.3.2.1. Incubation temperature	1
4.3.2.2. Initial pH values	1
4.3.2.3. Agitation speeds	1
4.4. Biological activity of alternan producing <i>Leuconostoc</i>	
strains in modified med.3	1
4.5. Mutation for improving alternan production by	
Leuconostoc strains	1
4.6. Alternan production as influenced by different	
agitation speeds using bioreactor as a batch culture	1
5. SUMMARY	1
6. REFERENCES	1
ARABIC SUMMARY	

LIST OF TABLES

Table		D
No.		Page
1	The number of high, moderate, weak and inactive alternan producing bacterial isolates from different foodstuffs	49
2	Alternan and dextran production by different <i>L. mesenteroides</i> strains on different media incubated at 30°C for 12 hrs using shake flasks as a batch culture.	52
3	Alternan and dextran production by different <i>L. mesenteroides</i> strains on different media incubated at 30°C for 24 hrs using shake flasks as a batch	50
4	culture Effect of different carbon sources on alternan and dextran production by different <i>L mesenteroides</i> strains on basal med. 3 incubated at 30° C for 12 hrs	53
5	using shake flasks as a batch culture	57 58
6	Effect of different sucrose concentrations on alternan and dextran production by <i>L. mesenteroides</i> C ₃ on basal med. 3 during 24 hrs incubation period at 30°C using shake flasks as batch culture	61
7	Effect of different sucrose concentrations on alternan and dextran production by <i>L. mesenteroides</i> M ₄ on basal med. 3 during 24 hrs incubation period at 30°C using shake flasks as batch culture	62

Table

ı ـ ـ ا

	Effect of different sucrose concentrations on alternan	
8	and dextran production by L.mesenteroides NRRL B-	
	1355 on basal med. 3 during 24 hrs incubation period	
	at 30°C using shake flasks as batch culture	63
9	Parameters of alternan produced by L. mesenteroides	
	strains at optimum fermentation period as influenced	
	by different sucrose concentrations using shake flaks	
	as a batch culture	66
	Parameters of dextran produced by L. mesenteroides	
10	strains at optimum fermentation period as influenced	
10	by different sucrose concentrations using shake flaks	
	as a batch culture	67
	Correlation coefficient (R) between sucrose	
11	concentrations and each of growth, alternan and	
	dextran of L. mesenteroides strains	69
	Effect of different nitrogen sources on alternan and	
12	dextran production by L. mesenteroides C ₃ on basal	
12	med.3 during 24 hrs incubation period at 30°C using	
	shake flasks as a batch culture	71
	Effect of different nitrogen sources on alternan and	
13	dextran production by L. mesenteroides M ₄ on basal	
13	med.3 during 24 hrs incubation period at 30 °C using	
	shake flasks as a batch culture	72
	Effect of different nitrogen sources on alternan and	
14	dextran production by L. mesenteroides NRRL B-	
14	1355 on basal med.3 during 24 hrs incubation period	
	at 30°C using shake flasks as a batch culture	73
	Parameters of alternan produced by L. mesenteroides	
15	strains during 24 hrs fermentation period as influenced	
13	by different nitrogen sources using shake flaks as a	
	batch culture	76

Table		
No.		
16	Parameters of dextran produced by <i>L. mesenteroides</i> strains during 24 hrs fermentation period as influenced by different nitrogen sources using shake flaks as a batch culture	77
17	Effect of initial C/N ratios or S/Y (sucrose/ yeast extract) ratios on alternan and dextran production by <i>L. mesenteroides</i> C ₃ on basal med.3 during 24 hrs incubation period at 30°C using shake flasks as a batch culture	80
18	Effect of initial C/N ratios or S/Y (sucrose/ yeast extract) ratios on alternan and dextran production by <i>L. mesenteroides</i> M ₄ on basal med.3 during 24 hrs incubation period at 30°C using shake flasks as a batch culture	81
19	Effect of initial C/N ratios or S/Y (sucrose/ yeast extract) ratios on alternan and dextran production by <i>L. mesenteroides</i> NRRL B-1355 on basal med.3 during 24 hrs incubation period at 30°C using shake flasks as a batch culture	82
20	Parameters of alternan produced by <i>L. mesenteroides</i> strains at optimum fermentation period as influenced by different C/N ratios using shake flaks as a batch culture	84
21	Parameters of dextran produced by <i>L. mesenteroides</i> strains at optimum fermentation period as influenced by different C/N ratios using shake flaks as a batch culture	86
22	Effect of different Tween types on alternan and dextran production by alternan producing <i>L. mesenteroides</i> strains on basal med.3 during 24 hrs incubation period at 30°C using shake flasks as a batch culture	88

Table

No.		
	Effect of different Tween 80 concentrations on	
23	alternan and dextran production by alternan producing	
	L mesenteroides strains during 24 hrs of incubation	
	period at 30°C using shake flasks as a batch culture	91
	Parameters of alternan produced by L. mesenteroides	
24	strains at optimum fermentation period as influenced	
<i>2</i> 4	by different Tween 80 concentrations using shake	
	flaks as a batch culture	94
	Parameters of dextran produced by L. mesenteroides	
25	strains at optimum fermentation period as influenced	
23	by different Tween 80 concentrations using shake	
	flaks as a batch culture	95
	Correlation coefficient (R) between different Tween	
26	80 concentrations of fermentation medium and each of	
20	growth, alternan and dextran of L mesenteroides	
	strains	97
	Effect of different ascorbic acid concentrations on	
27	alternan and dextran production by L. mesenteroides	
21	C ₃ on basal med.3 during 24 hrs of incubation at 30°C	
	using shake flasks as a batch culture	99
	Effect of different ascorbic acid concentrations on	
28	alternan and dextran production by L. mesenteroides	
20	M ₄ on basal med.3 during 24 hrs of incubation at 30°C	
	using shake flasks as a batch culture	100
	Effect of different ascorbic acid concentrations on	
29	alternan and dextran production by L. mesenteroides	
	NRRL B-1355 on basal med.3 during 24 hrs	
	incubation period at 30°C using shake flasks as a batch	
	culture	101

Table

No.		
30	Parameters of alternan produced by <i>L. mesenteroides</i> strains at optimum fermentation period as influenced by different ascorbic acid concentrations using shake	
	flaks as a batch culture	103
31	by different ascorbic acid concentrations using shake flaks as a batch culture	104
32	Effect of different salts solution volumes on alternan and dextran production by <i>L. mesenteroides</i> C ₃ on basal med.3 during 24 hrs incubation period at 30°C	107
33	using shake flasks as a batch culture Effect of different salts solution volumes on alternan and dextran production by <i>L. mesenteroides</i> M ₄ on basal med.3 during 24 hrs incubation period at 30°C using shake flasks as a batch culture	107
34	Effect of different salts solution volumes on alternan and dextran production by <i>L. mesenteroides</i> NRRL B-1355 on basal med.3 during 24 hrs incubation period at 30°C using shake flasks as a batch culture	109
35	Parameters of alternan produced by <i>L. mesenteroides</i> strains at optimum fermentation period as influenced by different salts solution volumes using shake flaks as a batch culture	110
36	Parameters of dextran produced by <i>L. mesenteroides</i> strains at optimum fermentation period as influenced by different salts solution volumes using shake flaks as a batch culture	113
37	Correlation coefficient (R) between different salts solution volumes of fermentation medium and each of growth, alternan and dextran of <i>L mesenteroides</i> strains	114