

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار % ١ - - ٥ مئوية ورطوية نسبية من ٢٠ - ٥ % قي درجة حرارة من ١٥ - ٥ ٥ مئوية ورطوية نسبية من ٢٠ - ٢ % To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

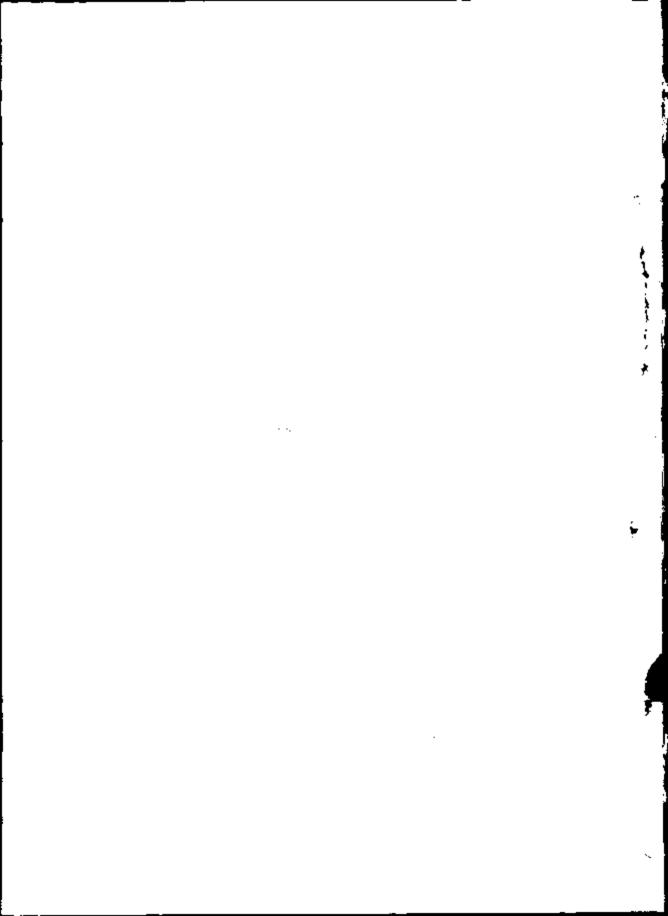
Performance Of Automatic Repeat Request (ARQ) Protocols

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering)

Submitted By

Wael Mohammad Atteya Omar


B.Sc. of Electrical Engineering (Electronics and Communications Engineering) Ain Shams University, 2000

Supervised By

Prof. Dr. Mohammad Nabil Saleh Prof. Dr. Salwa Hussein El-Ramly

LC L

Cairo - 2000

EXAMINERS COMMITTEE

Name : Wael Mohammad Atteya Omar

Thesis: Performance Of Automatic Repeat Request.

Degree: Master of Science in Electrical Engineering

(Electronics and Communications Engineering)

Name, Title, and Affiliation

Signature

Prof. Dr. Nabil Mohammad Abdel Makssoud El-Nadi

Deputy Chairman, IDSC, Cairo.

2holy

2. Prof. Dr. Hadya Said El-Henawi

Electronics and Communications Engineering Dept. Faculty of Engineering

Ain Shams University, Cairo

H-91 Henrawy

3. Prof. Dr. Mohammad Nabil Saleh

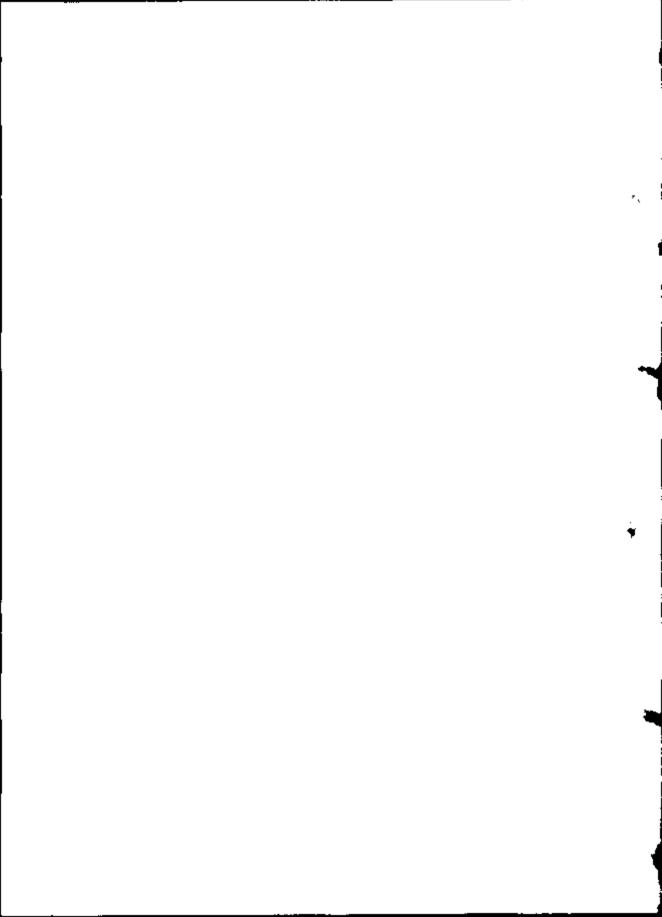
Electronics and Communications Engineering Dept.

Faculty of Engineering

Ain Shams University, Cairo

M. N. Jell

4, Prof. Dr. Salwa Hussein El-Ramly


Electronics and Communications Engineering Dept.

Faculty of Engineering

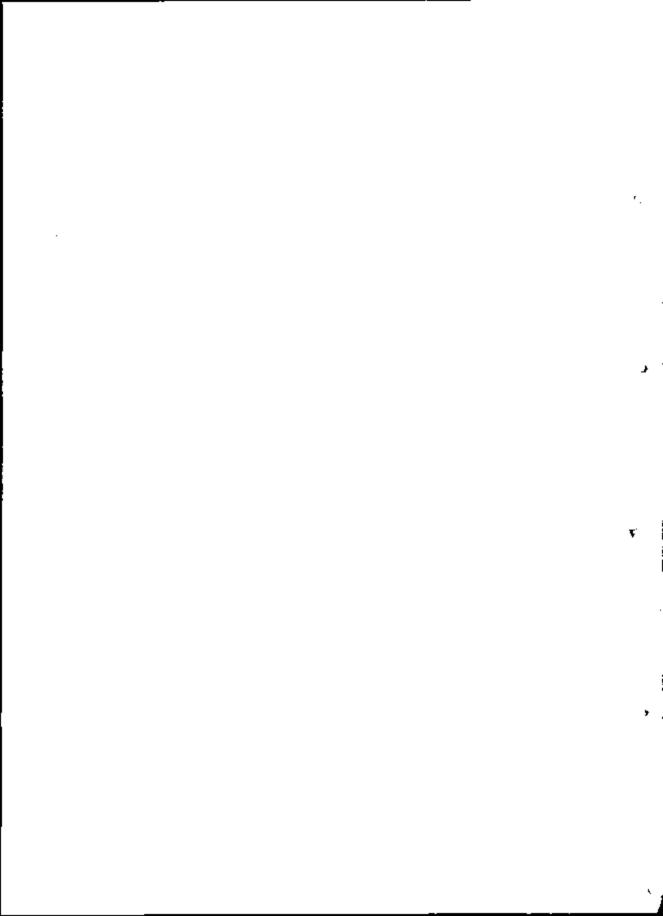
Ain Shams University, Cairo

Salwa I Round

Date: 23 / 03 / 2000

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

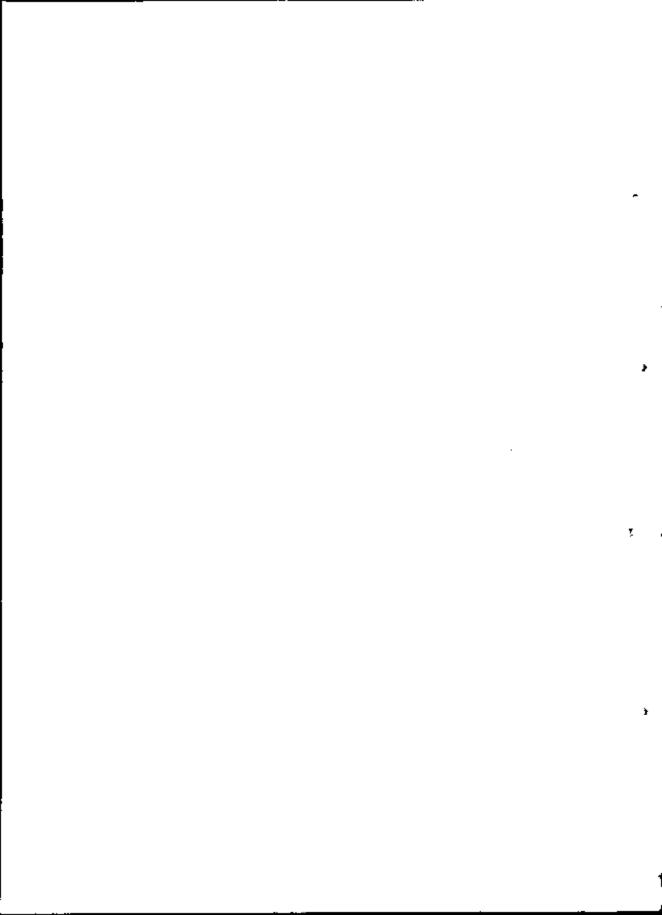

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at other university or institution.

Date : / / 2000

Signature :

Name : Wael Mohammad Atteya Omar


ACKNOWLEDGMENTS

I would like to express my sincere appreciation and deepest gratitude to Prof. Dr. Salwa El-Ramly for her continuous support and valuable guidance which she did with patience, care, and encouragement. I do not know how to thank Prof. Salwa. She was always there whenever I need her to answer my questions. I will always remember the precious discussions we had together. I feel very lucky to have been able to work with her over the past years.

My sincere thanks to Prof. Dr. Mohammad Nabil Salch for his continuous advice and recommendations during my undergraduate and graduate courses and research work. I have enjoyed being his student for the past five years, and I will always be indebted to him for his encouragement and constructive criticism.

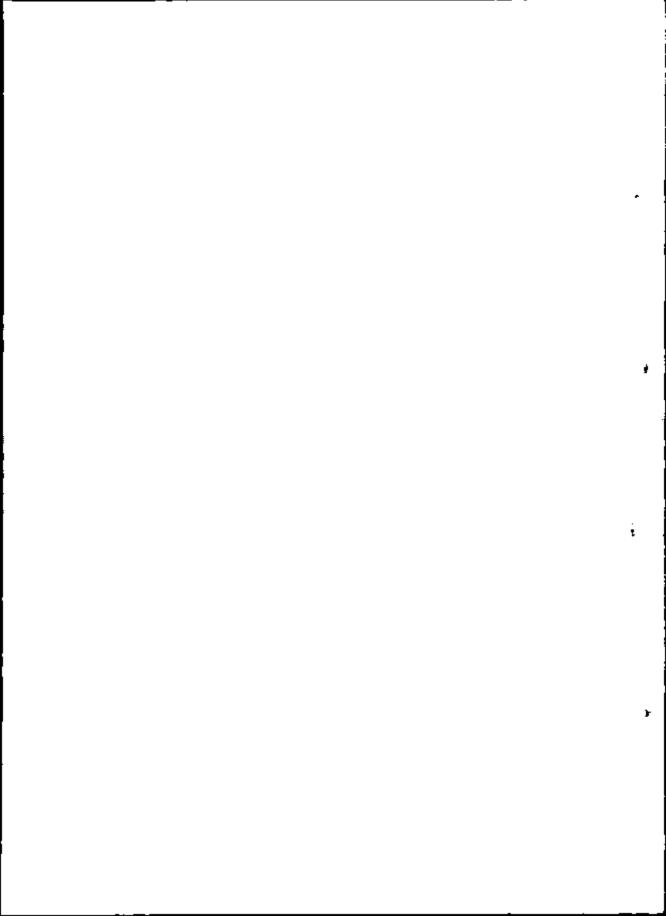
I am also grateful to all the professors, staff members of electronics and communications engineering department, Ain shams university who supported and encouraged me during my research.

Last but not least, my family who gave me moral support and encouragement to pursue my goals more than they realize. I cannot express the love and gratitude I feel for them.

ABSTRACT

Wael Mohammad Atteya Omar Performance of Automatic Repeat Request (ARQ) Protocols. Master of Science dissertation, Ain Shams University, 2000

Message Delay, Average Message length and throughput efficiency are the main performance characteristics of a data transmission system with Automatic Repeat Request (ARQ) error control protocol. ARQ is classified into three main different types of schemes.


Those schemes did not consider the system parameters like channel length or channel noise level, which may lead to changes in the level of performance with the change in the system characteristics. In other words, those schemes are independent of the system characteristics that may be changing during operation. In this thesis, a new method is introduced to improve ARQ schemes.

The method tries to establish a dependency between the used scheme and the system characteristics. This method depends on the continuous measuring of some system parameters during operation, then using them to improve the system performance through minimizing the message delay, average message length and throughput efficiency. The main two measured parameters are channel noise level and the round-trip delay that are assumed to be sufficient for the optimization procedure. This new method was applied on SW scheme type as an example. A multi-channel system (more than one channel used as a data link) is assumed in our analysis.

ð

The proposed protocol reduces the average message length, the delay and hence, better efficiency is obtained. In addition, the proposed scheme gives better results than that of the ordinary multi-channel case.

Keywords: Automatic Repeat Request (ARQ), Stop and Wait, Go back N, Selective repeat.

Contents

Acknowledgements	
Abstract	
Contents	ii
List of Abbreviations and Symbols	ν
List of Figures	
List of Tables	
Chapter 1 Introduction	1
1.1. Introduction	1
1.2 The need for protocols	, 2
1.3. Error control	
1.4 Automatic Repeat Request (ARQ)	
1.4.1 Stop-Aud-Wait ARQ (SW)	
1.4.2 Go-Back-N ARQ (GBN)	
1.4.3 Selective repeat ARQ (SR)	
1.5. Performance Improvement Using Feed Back	
1,6.Out Line of the Thesis	
Chapter 2 Queuing Theory	10
2.1, Introduction to Queuing Theory	
2.2. Poisson Process	
2.3. Pure Birth Process	
2.4. Birth-Death process	
2.5. Average Number of messages	
2.6. Queuing Models	
2.6.1. M/G/1 Queue	
2.6.1.1.The Average Queue Length	
2.6.1.2. Delay Time Calculation 2.6.2. M/D/1 Queue	
2.7. Conclusions	
	27
Chapter 3 Analysis of SW-ARQ	
3.1. Introduction to ARQ	
3.2 Standard SW Scheme Strategy	
3.3. Why SW scheme?	34
3.4. System Description	34
3.5. General Analytical Study of SW Scheme Performance	36
3.5.1 Average message length (A) calculation	37
3.5.2 Throughput Analysis	39

3.6. Different SW Scheme Analysis	40
3.6.1. Static Scheme	.,, 41
3.6.2. Dynamic Scheme	44
3.6.2.1. Sastry Scheme	44
3.6.2.2. Generalized Scheme	47
3.7. Average Delay	49
3.7.1. Average Delay For THE Static Scheme.	50
3.7.2. Average Delay For The Classical Scheme	53
3.7.3. Average Delay For The General Static Scheme	
3.8. Conclusions.	56
Chapter 4 ARQ System For Noisy Communication Channels	58
4.1. Introduction	58
4.2. Throughput Optimization For Generalized Stop-And-Wait ARQ Sc	heme59
4.2.1.Throughput Comparison.	. 63
4.3. Improving Automatic Repeat-Request (ARQ) Performance on Sat	ellite
Channels Under High Error Rate Conditions	64
4.4. Performance Of ARQ Protocols in Non Independent Channel Error	e 60
4.5. Comments On The Previous Treatments	71
4.6. Comparative Study For The Standard SW Schemes	72
4.7. Conclusion	77
Chapter 5 Improved SW Scheme	
5.1 Introduction	78
5.2 Optimization Of The Static Scheme	78
5.3. Optimization Of The Dynamic Scheme	84
5.4. Searching for An Improved Scheme	86
5.5. Improved Scheme.	87
5.6. Average Delay For The Improved Scheme	88
5.7. Comparative Study Between The Improved Scheme And the Standar	rd
SW Schemes	91
5.8 Conclusion	94
Chapter 6 Multi-channel SW scheme	95
6.1. Multi-Channel SW Scheme	95
6.2. Multi-Channel Modes Operation	95
6.3. Independent Operation Analysis	97
6.3.1.1 hroughput Efficiency Analysis	97
6.4 Improved Scheme	100
6.4.1 Joint operation Analysis	102
6.5. A comparative Study Of Different SW Schemes.	.106
	107