

Ain Shams University
Faculty of Engineering
Computer and Systems Department

Model Predictive Control (MPC) On

Chip

A Thesis

Submitted in partial fulfillment for the requirements of Master of Science degree in Electrical Engineering Submitted by:

Yasser Shoukry Sakr

B.Sc. of Electrical Engineering
(Computer and Systems Department)
Ain Shams University, 2007.
Supervised by:

•

Dr. Sherif Ali Hammad

Prof. Dr. Mohamed El-Shafey

Dr. Sahar Hagag Cairo 2010

Acknowledgments

All praise be to Allah the High, "who teacheth by the pen, teacheth man that which he knew not.", Quran[96:4, 96:5]. I say what Prophet Solomon said: "··· O my Lord! so order me that I may be grateful for Thy favours, which thou hast bestowed on me and on my parents, and that I may work the righteousness that will please Thee: And admit me, by Thy Grace, to the ranks of Thy righteous Servants.", Quran[27:19]

I wish to express my deep gratitude to my advisors: Dr. Sherif Hammad, Prof. Dr. Mohamed El-Shafey and Dr. Sahar Hagag for their guide and important remarks on the developed results and the written manuscript and their continuous encouragement.

I hearty thank Dr. Sherif for his suggestion of thesis topic, his invaluable support, guidance and his constructive comments. This thesis would not have been the same without him. He paved me the way to finish it and supported me in presenting my work in all the international conferences in which we have accepted papers. He has undoubtedly been the greatest intellectual influence in my life and a great friend. I will always cherish the time we spent working together.

Special thanks to Dr. Mohamed Watheq El-Kharashi for his constant support, concern, insight, dedication to research, invaluable help, and attention to detail throughout all digital design and hardware arithmetic aspects of this work. He kindly reviewed this thesis and contributed in the published papers in: IFAC 2010 and IEEE-ESL 2010. He proposed the idea of using systolic arrays in accelerating the execution of the control algorithms used and proposed the techniques of embedding processing cores into smaller-sized cores.

I would like to thank my parents for their unfailing help along my age and for their efforts during this thesis development. They offered me much advice and encouragement that was a great source of comfort.

Finally, To my beloved wife: Thank you for your patience, great support and encouragement during the most important stages of my life. Thank you for taking all responsibility of our life providing me with full comfort and concentration in my work. I now have to repay you the countless nights and weekends spent in the working on this thesis.

Abstract

Applying a computationally intensive control algorithm inside an embedded time-safety-critical application represents a Cyber-Physical challenge. This thesis applies Generalized Predictive Control on automotive active suspension system. The main objective of any automotive active suspension system is to achieve an acceptable behavior, i.e., ride comfort, over a range of working frequencies while minimizing the exerted energy. Thesis objective is to proof the ability of using time-consuming advanced control algorithms on time-safety-critical embedded applications while satisfying tight real-time constraints.

Digital model identification is carried out for an automotive active suspension system, which is then used for numerical simulation of the process and the design of digital controller filters. Frequency and time response of the process are studied in order to emphasize on the challenges of the closed loop control over a networked and embedded control system. An experimental environment based on an automotive CAN channel is used to apply identification and real-time closed loop experiments.

Experimental results show the efficiency of the proposed controller tuning while giving a considerable minimization of the exerted energy. These results are obtained using an embedded software controller implementation, which is tuned offline and verified against a linearized model of the process. In order to tackle the nonlinearities presented in the process, controller filter should be computed online each sampling period. Software results show real-time challenges in the implementation of the online controller. These real-time implementation challenges are highlighted by profiling the software implementation.

Matrix operations consume a large portion of the overall execution time of the online computation of the controller. A hardware coprocessor based on a set of systolic arrays is proposed to meet real-time constraints. The proposed computing system is then integrated inside an ARM-based embedded platform using the state-of-the-art CAP9 technology. The proposed computation system is verified to meet real-time constraints over wide range of tuning parameters.

Contents

Table of Contents							
Li	List of Figures IX						
Li	List of Tables XIV						
List of Symbols and Abbreviations XVI							
1	Introduction						
	1.1	Motivation	3				
	1.2	Problem Statement	4				
	1.3	Thesis outline	6				
2	Mo	del Predictive Control	9				
	2.1	MPC Strategy	10				
	2.2	Types of MPC controllers	13				

		2.2.1	Simple Model MPC	13
		2.2.2	Adaptive MPC	13
		2.2.3	Multivariable MPC	14
		2.2.4	Robust MPC	14
		2.2.5	Non-Linear MPC	15
	2.3	Genera	alized Predictive Controller	16
		2.3.1	J-Step Ahead Predictor	18
			Step 1: Solving Diophantine Equation	18
			Step 2: Forming Predictor Equation	20
			Step 3: Forming Predictor Matrix	23
		2.3.2	Cost Function Optimizer	25
		2.3.3	Equivalent R-S-T Structure	28
	2.4	MPC	on Chip	29
		2.4.1	MPC on Chip; Industrial Motivation	29
		2.4.2	MPC on Chip; Bibliography	30
	2.5	Conclu	usion	31
3	Aut	omotiv	ve Active Suspension System	33
	3.1	Types	Of Suspension Systems	34
		3.1.1	Passive Suspension	34
		3.1.2	Semi-Active Suspension	35
		3.1.3	Active Suspension	35

3.2	Active	e Suspension System Model	36
	3.2.1	Quarter Car Model	36
	3.2.2	Hydraulic Actuator	39
3.3	Comp	lete Model	42
3.4	System	n Time Response	44
	3.4.1	Effect of Actuator Voltage Input	44
	3.4.2	Effect of Road Profile Disturbance	48
3.5	Identi	fying System Digital Model	48
	3.5.1	Choosing Sampling Frequency	48
	3.5.2	Deriving Digital Model $H_v(z)$	51
		Over Sampling	52
		Anti-Aliasing Filter	52
		Choosing Model Structure	52
		Excitation Signal	53
		Model Identification algorithm and Model Vali-	
		dation Criteria	54
	3.5.3	Deriving Digital Model $H_r(z)$	55
3.6	Model	l Analysis	57
	3.6.1	Analysis of $H_v(z)$	57
	3.6.2	Analysis of $H_r(z)$	60
3.7	Concl	usion	63

4	GP	C Desi	gn and Tuning	65
	4.1	Contro	ol Strategies	66
		4.1.1	Linear Control Strategies	66
		4.1.2	Non-Linear Control Strategies	68
		4.1.3	Intelligent Control Strategies	73
	4.2	NECS	Based Verification	75
		4.2.1	Active Suspension over NECS	75
		4.2.2	Test Bench Road Track	78
		4.2.3	Performance Evaluation Criteria	78
		4.2.4	Open Loop Response of the Test Bench	80
	4.3	GPC (Controller Design and Tuning	80
		4.3.1	Internal Model Principle	83
			Experiment 1: Prediction Horizon $= 0.8$ sec,	
			Control Horizon = 0.05 sec	83
			Experiment 2: Prediction Horizon = 0.8, Con-	
			trol Horizon = 0.05 sec , Applying In-	
			ternal Model Principle	83
		4.3.2	Effect Of Prediction and Control Horizon	85
			Experiment 2(revisited): Prediction Horizon =	
			$0.8~{\rm sec},$ Control Horizon = $0.05~{\rm sec}$	85

			Experiment 3: Prediction Horizon $= 0.8 \text{ sec},$	
			Control Horizon = $0.1 \text{ sec} \dots$	86
			Experiment 4: Prediction Horizon = 1.0 sec,	
			Control Horizon = $0.1 \text{ sec} \dots$	86
			Experiment 5: Prediction Horizon = 3.5 sec,	
			Control Horizon = $1.2 \text{ sec} \dots \dots$	86
	4.4	Conclu	usion	93
5	GP	C Co-l	Processor	95
	5.1	Introd	uction	95
	5.2	Softwa	are Implementation	96
	5.3	Matrix	x Multiplication Co-processor	101
		5.3.1	Multiplication Systolic Array Example	101
		5.3.2	Hardware Implementation	109
		5.3.3	Matrix Multiplication Co-processor Performance	112
	5.4	Matrix	x Inversion Co-processor	112
		5.4.1	Hardware Implementation	113
		5.4.2	Matrix Inversion Co-processor Performance	122
	5.5	Overa	ll Co-processor Performance	122
	5.6	Conclu	usion	123
6	Imr	olemen	tation Case Study: CAP9 Technology	125

	6.1	CAP9 Technology	125
	6.2	Overall Architecture	126
	6.3	Matrix Co-Processor Implementation	128
	6.4	Control unit	131
	6.5	Profiling Results	133
	6.6	Conclusion	135
7	Con	aclusion	137
	7.1	Summary	137
	7.2	Future work	139
\mathbf{A}	Mat	tlab Model for GPC	141
В	Pub	lications	149
	B.1	International Conferences	149
	B.2	Peer-Reviewed Journals	150
$\mathbf{R}_{\mathbf{c}}$	efere	nces	151

List of Figures

1.1	MPC control scheme	2
2.1	MPC Strategy	12
2.2	Digital controller canonical structure	29
3.1	Quarter Car Model	38
3.2	Physical Schematic for Hydraulic Actuator	40
3.3	Quarter Car Model	43
3.4	Constant road profile, variable voltage input experi-	
	ment configuration	45
3.5	Effect of voltage input varying from 1-10 volt	46
3.6	Effect of voltage input varying from 20-100 volt	46
3.7	Effect of voltage input varying from 100-250 volt	47
3.8	Constant road profile, variable voltage input experi-	
	ment configuration	49

3.9	Effect of step road profiles	49
3.10	Frequency Response of $H_r(s)$	51
3.11	Anti Aliasing Filter	52
3.12	Overall system model	53
3.13	System Output	54
3.14	Whiteness test results	56
3.15	Difference between System Output and Model Output	56
3.16	Frequency response of the identified $B(z)/A(z)$ on a log	
	scale	58
3.17	Frequency response of the identified $B(z)/A(z)$ on a	
	linear scale	59
3.18	Poles (blue) and zeros (red) of the identified $B(z)/A(z)$	
	model	59
3.19	Frequency response of the identified $B(z)/A(z)$ on a log	
	scale	60
3.20	Frequency response of the identified $B(z)/A(z)$ on a	
	linear scale	61
3.21	Poles (blue) and zeros (red) of the identified $C(z)/A(z)$	
	model	61
3.22	Frequency response of the identified $H_r(z)$ on a log scale	62

3.23	Frequency response of the identified $H_r(z)$ on a linear	
	scale	62
3.24	Ploes (blue) and zeros (red) of the identified $H_r(z)$ model	63
11	C 4 1 I NECC	70
4.1	Control Loop over NECS	76
4.2	Active Suspension Logical Control Loop	77
4.3	Verification environment used to tune controller param-	
	eters	77
4.4	Test Road	79
4.5	Open Loop Results	81
4.6	Enhancing the disturbance rejection using internal model	
	principle	84
4.7	Results of Experiment 1, $h_p = 0.8, h_c = 0.05 \text{ sec}$	88
4.8	Results of Experiment 2, $h_p = 0.8, h_c = 0.05$ sec	89
4.9	Results of Experiment 3, $h_p = 0.8, h_c = 0.1 \text{ sec}$	90
4.10	Results of Experiment 4, $h_p = 1.0, h_c = 0.1 \text{ sec}$	91
4.11	Results of Experiment 5, $h_p = 3.5, h_c = 1.2 \text{ sec}$	92
5.1	GPC Steps	97
	-	
5.2	Hardware Schematic of a 4x4 multiplication systolic array:	102
5.3	Hardware Schematic of the multiplication cell	103
5.4	Systolic Array Multiplication Example: Clock tick = 1	104

5.5	Systolic Array Multiplication Example: Clock tick $= 2$	105
5.6	Systolic Array Multiplication Example: Clock tick = 3	105
5.7	Systolic Array Multiplication Example: Clock tick = 4	106
5.8	Systolic Array Multiplication Example: Clock tick = 5	106
5.9	Systolic Array Multiplication Example: Clock tick = 6	107
5.10	Systolic Array Multiplication Example: Clock tick = 7	107
5.11	Systolic Array Multiplication Example: Clock tick = 8	108
5.12	Systolic Array Multiplication Example: Clock tick = 9	108
5.13	Dataflow along small-sized systolic array for multipli-	
	cation of two 6x6 matrices (first 16 cycles)	110
5.14	Location of the small-sized systolic array while multi-	
	plying two 6x6 matrices (first 16 cycles)	111
5.15	Boundary Cell Schematic	116
5.16	Internal Cell Schematic	117
5.17	Systolic array for matrix inversion using QRD $\ \ldots \ \ldots$	118
5.18	Systolic array for matrix inversion using LQD $\ \ldots \ \ldots$	119
5.19	Dataflow along small-sized systolic array for inversion	
	of a 4x4 matrix (first 25 cycles)	120
5.20	Location of the small-sized systolic array while inverting	
	a 4x4 matrix (first 8 cycles)	121
6.1	Overall architecture of the proposed embedded system.	127