

شبكة المعلومات الجامعية

بسم الله الرحين الرحيم

@ ASUNET

moul but dec

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من 15-25 منوية ورطوبة نسبية من 20-40% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

BIOCHEMICAL AND GENETIC STUDIES ON TRYPANOSOMES

THESIS

Submitted to Partial Fulfillment of Doctor Degree In Basic Medical Science (Parasitology)

Bv

Hala Kamal Hassan El Deeb

Assistant Lecturer of Parasitology
Faculty of Medicine, Ain Shams University

Under the Supervision of

Prof. Dr. Nabila Hefny Mohamed Osman

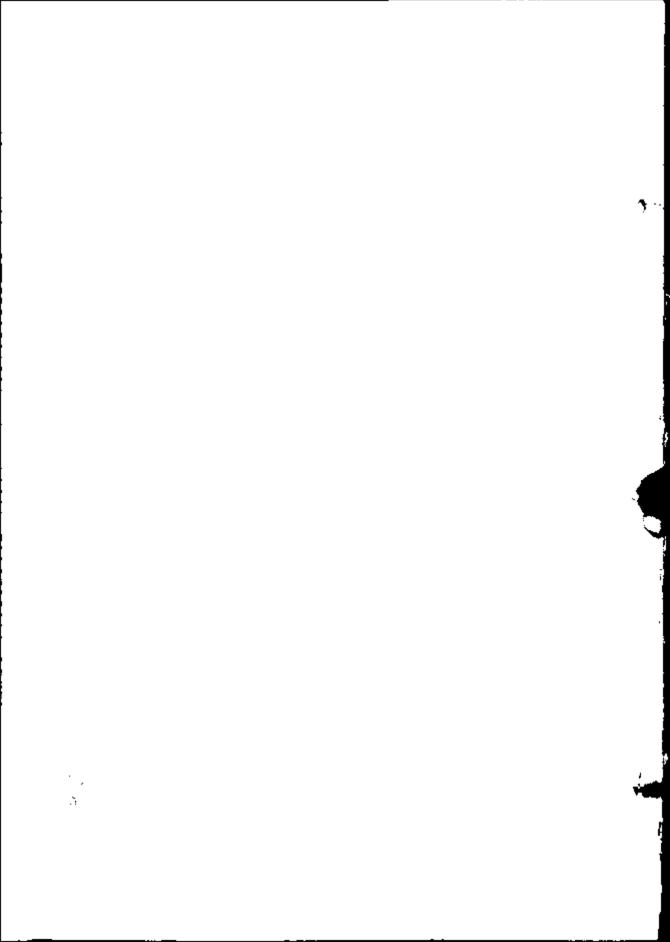
Professor of Parasitology
Former Head of Parasitology Department
Faculty of Medicine, Ain Shams University

Prof. Dr. Mona Mahmoud Abd El Mawta Ahmed

Professor of Parasitology
Faculty of Medicine. Ain Shams University

Prof. Dr. Abd El Hamid Abd El Tawab Sabry

Professor of Parasitology Vice Dean of the Faculty of Medicine. Cairo University, Fayoum Branch


Prof. Dr. Elham Ahmed Nagib El Sherif

Professor of Parasitology
Faculty of Medicine, Ain Shams University

Dr. Nashwa Ibrahim Ramadan

Assistant Professor of Parasitology Faculty of Medicine, Ain Shams University

> PARASITOLOGY DEPARTMENT FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 2002

ABSTRACT

BIOCHEMICAL AND GENETIC STUDIES ON TRYPANOSOMES

By HALA KAMAL HASSAN EL DEEB

Assistant Lecturer of Parasitology Faculty of Medicine, Ain Shams University

African trypanosomes are pathogenic kinetoplastid protozoa. They cause a fatal disease in humans called *Sleeping Sickness*. African trypanosomes are infamous for their ability to evade the immune responses by periodically switching their variant surface glycoprotein, a phenomenon called antigenic variation. In trypanosomes, controlled protein degradation by proteasome plays an important role in regulating the cellular development.

In this study an in vitro translation system from bloodstream forms T. brucei was used to study trypanosomesspecific post-translational modifications of VGS. The results revealed that the trypanosome lysate system could not synthesize VSG117 after addition of either VSG117-mRNA or VSG117-total RNA and had high rate of endogenous translation. The role of proteasomes in T. brucei was also studied by the use of transgenic trypanosomes expressing protein "PPoF-GPI221". Western blotting analysis proved that "PPaF-GPI221" was glycosylated and had no GPI anchor. Immunofluorescence and immunoelectron microscopy revealed that "PPaF-GPI221" was localized in the cytoplasm and could not be expressed at the transgenic trypanosome surface. Western blotting analysis showed "PPaF-GP1221" to be a short-lived protein and its degradation was mediated by

the proteasome because it was sensitive to the proteasome inhibitors LLnV and lactacystin as well as NEM. Whereas LLnV and lactacystin had incomplete inhibitory effect, NEM completely inhibited the degradation of "PPaF-GPI221". Also, in this study, it was proved that transgenic trypanosomes could be cultivated axenically in modified MEM medium for long-term by daily replacements of the modified MEM medium.

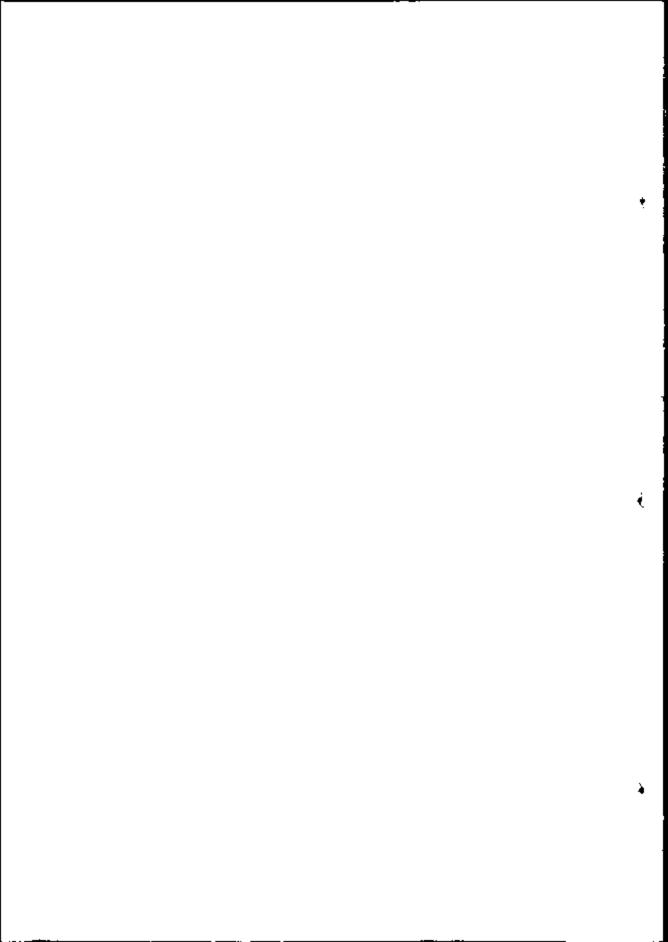
Keywords:

T. brucei – in vitro translation system – GPI anchor – glycosylation – proteasome – proteasomal inhibitors.

<u>ACKNOWLEDGMENT</u>

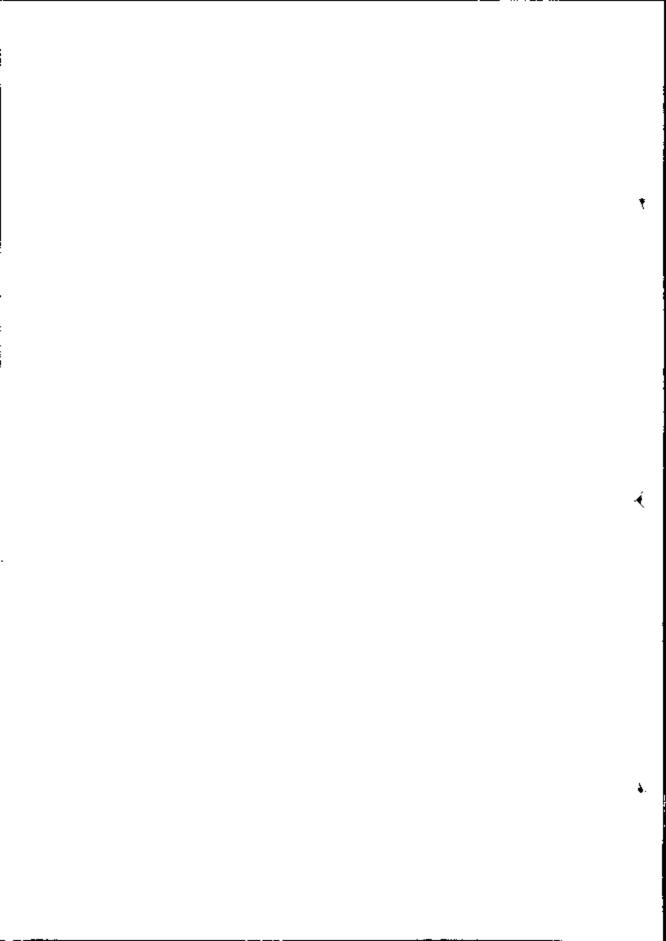
I would like to express my deepest thanks and utmost gratitude to *Prof. Dr. Nabila Hefny Mohamed Osman*, Professor of Parasitology and former Head of the Parasitology Department, Faculty of Medicine, Ain Shams University, for the continuous encouragement, and valuable advice she has given throughout the study. I'd like to specially thank her for the support she has always given to me during this research.

I would like to express my deepest gratitude to Prof. Dr. Mona Mahmoud Ahd El Mawla Ahmed and Prof. Dr. Elham Ahmed Nagib El Sherif, Professors of Parasitology, Faculty of Medicine, Ain Shams University, for taking part in the supervision of this work. I am particularly indebted for their honest assistance, guidance, and support.


I would like to extend my warmest regards and thanks to **Prof. Dr. Abd El Hamid Abd El Tawab Sabry**, Professor of Parasitology, and Vice Dean of the Faculty of Medicine, Cairo University, Fayoum branch, for taking part in the supervision of this research, as well as for his encouragement and support.

I'd like to express my deepest thanks to *Dr. Nashwa Ibrahim Ramadan*, Assistant Professor of Parasitology, Faculty of Medicine, Ain Shams University, for taking part in the supervision of this work. I am particularly indebted to her for her honest guidance and continuous advice, as well as for offering her experience and utmost support

I would like to express my deepest gratitude to all staff members at the *Biochemistry Institute*, *University of Tübingen*, *Germany*, for offering all the facilities needed for this study to appear in its final form.


Finally, I would like to thank my husband, my family, as well as all the members of the Parasitology Department, Faculty of Medicine, Ain Shams University, for all the support they have given during the difficult moments and hard times that I have passed through, until this work was finally done. I'd like to specially mention *Prof. Dr. Fathy M. Abd El Ghafar*, Professor and Head of the Purasitology Department, Faculty of Medicine, Ain Shams University, as well as *Prof. Dr. M. Latif Khaled, Prof. Dr. Magda El Sayed Azab* and *Prof. Dr. Laila M. El Okbi*, Professors of Parasitology, Faculty of Medicine, Ain Shams University, for their honest and sincere encouragement and support.

٠.

CONTENTS

	Page
Abbreviations	i
List of Figures	iv
Introduction	1
Review of Literature	2
African Trypanosomes	2
Genetic, Biochemical, and Molecular	_
Biological Aspects of T. brucei	56
Biochemistry and Molecular Biology	
Techniques Applied in T. brucei Research	99
Aim of Work	119
Materials and Methods	120
Results	174
Discusion	215
Conclusion	229
Summary	230
References	234
Arabic Summary	1

ABBREVIATIONS

ATP Adenosine triphosphate

BBB Blood brain barrier
BF Bloodstream forms
BHC Benzene hexachloride

CATT Card agglutination test for trypanosomiasis

cDNA Complementary DNA

CIATT Card indirect agglutination test for

trypanosomiasis

CRD Cross reacting determinant

CSF Cerebrospinal fluid

Cys Cysteine

DDT Chlorophenothane DEAE Diethylaminoethyl

DEPC Diethyl pyrocarbonate
DFMO γ-Difluromethylomithine
DNA Deoxyribonucleic acid

dNTPs Deoxyribonucleoside triphosphate

dT Deoxythymidine

E-64 Trans-epoxy succinyl-L-leucylamido-

(4 guanidino) butane

EDTA Ethylene diamine tetraacetate

EEF Exoerythrocytic forms

EGTA Ethylene glycol-bis(2-aminoethylether)-N,N

tetraacetate

ELISA Enzyme-linked immunosorbent assay

ER Endoplasmic reticulum

ERAD Endoplasmic reticulum associated degradation

ES Expression site

ESAG Expression site-associated gene

FAZ Flagellar attachment zone

FP Flagellar pocket

.*

FITC Fluorescein isothiocyanate G Applied centrifugal field

ABBREVIATIONS (continue)

G1 First 'resting' stage of interphase
 G2 Second 'resting' stage of interphase

GERL Golgi endoplasmic reticulum lysosome

GAM Goat anti-mouse

GPI Glycosylphosphatidylinositol

GPI-PLC Glycosylphosphatidylinositol- phospholipase C

Ha Hectare

HA Haemagglutination tag-epitope
HCT Haematocrit centrifuge technique

HDL High density lipoprotein

IFA Indirect fluorescent antibody test

IFN Interferon
IL Interleuken
Kb Kilobase

kBq Kilobecquereis

kDa Kilodalton

LDL Low density lipoprotein

LLnV N-Carbobenzoxy-L-Leucyl-L-Leucyl-L-

1

Norvalinal

M Mitosis

mAECT Miniature anion exchange centrifugation

technique

MEM Minimum essential medium

mfVSG membrane form VSG

MlTat Molteno Institute Trypanozoon antigenic type

mi Milliliter mm Millimeter

mRNA Messenger RNA

MVAT Metacyclic variant antigen type

μg Microgram
μl Microliter
μm Micrometer

ABBREVIATIONS (continue)

NEM N-ethylmaleinimide

nm Nanometer NP-40 Nonidet

PCR Polymerase chain reaction

PFR Paraffageliar rod PLC Phospholipase C

PMSF Phenylmethylsulfonyl fluoride

PPαF Prepro-α-Factor

QBC Quantitative buffy coat

RER Rough endoplasmic reticulum RLO Rickettesia-like organisms

RNA Ribonucleic Acid

rNTP Ribonucleoside triphosphate

rRNA Ribosomal RNA S DNA replication

SDS Sodium dodecyle sulphate

SDS- SDS Polyacrylamide Gel Electrophoresis

PAGE

SIF Stumpy induction factor

SRA Serum resistance associated gene

sVSG Soluble form VSG

Thr Threonine

Tht Trypanosome hexose transporter
TLCK Tosyl-lysine chloromethylketone

TLF Trypanosome lytic factor
TNF Tumor necrosis factor

tRNA Transfer RNA

VAT Variant antigen type

VSG Variant surface glycoprotein

VSG ES VSG Expression Site °C Degree(s) Celsius

% Percent

LIST OF FIGURES

Figure	Titte	Page
Figure 1	Phylogeny of trypanosomes based on	4
_	nucleotide sequences of small subunit rRNA	
Figure 2	Life cycle of T. brucei	6
Figure 3	Route taken by trypanosomes in the tsetse	8
_	vector	
Figure 4	Stages of the cell cycle	10
Figure 5	Ultra-structure of \hat{T} , brucei (trypomastigote)	16
Figure 6	The flagellar basal complex	24
Figure 7	Distribution of T. b. rhodesiense and T. b.	28
Ū	gambiense	
Figure 8	Microhaematocrit tube method	41
Figure 9	VSG organization in the cell membrane	59
Figure 10	Hypothetical model of GPI processing	63
Figure 11	Structure of a typical nascent protein destined	66
Ü	to be GPI- anchored	
Figure 12	Primary structure of the GPI anchor of MITat	68
J	1.4 VSG and its GPI-PLC cleavage product	
Figure 13	Structure of an ES for BF VSG genes	73
Figure 14	The proteasome	90
Figure 15	The β2 active site of 20 S proteasome	92
Figure 16	Primary structure of prepro-α-factor	97
Figure 17	Plasmid pUB 4 for Tetracyclin-induced	98
	Expression System in T. brucei	
Figure 18	Capillary transfer of nucleic acids from	112
_	agarose gel to solid supports	
Figure 19	Comparison of vectors generally available for	113
	cloning DNA	
Figure 20	Outline of gene cloning	115
Figure 21	Synthesis of first strand cDNA from mRNA	118
Figure 22	Miniproteon II gel apparatus	162
Figure 23	The "Trans-Blot Semi-Dry Transfer Cell"	164
	blotting apparatus	
Figure 24	filustration of the setting up of the "Trans-Blot	165
	Semi-Dry Transfer Cell" blotting apparatus	
Figure 25	Electrophoresis apparatus of nucleic acids	168
Figure 26	Pyramitome 11800	173