GENETIC DIVERSITY AND MOLECULAR POLYMORPHISM OF SOME OKRA GERMPLASM

By SHIMAA MOSTAFA KASSEM HASSAN

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2004

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

GENETIC DIVERSITY AND MOLECULAR POLYMORPHISM OF SOME OKRA GERMPLASM

By SHIMAA MOSTAFA KASSEM HASSAN

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2004

Under the supervision of:

Dr. Rania Ahmed Younis

Associated Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Hanaiya El Itriby

Head of Research of Genetics (Emeritus), Head of National Gene Bank, Agricultural Research Centre.

ABSTRACT

Shimaa Mostafa Kassem Hassan: Genetic Diversity and Molecular Polymorphism of Some Okra Gemplasm. Unpublished M.Sc. Thesis, Genetics Department, Faculty of Agriculture, Ain Shams University, 2012.

Twenty nine okra accessions (Abelmoschus esculentus L.) were morphologically characterized using the UPOV descriptor for quantitative and qualitative characters. Data were recorded on 20 individual plants per accessions in two consecutive summer seasons (2009-2010). Significant differences were obtained between some accessions for all quantitative characters studied while variations were detected and described for the qualitative characters. Morphological characterization did not fully discriminate between all the accessions.

Forty two ISSR primers, five AFLP combinations and three SSR primer pairs were used to determine the level of polymorphism, molecular fingerprinting, identification of unique markers, and the estimation of genetic distances among the 29 okra accessions. The ISSR primers amplified 508 fragments of which 415 were polymorphic, representing 82% level of polymorphism with an average of 12.1 fragments per primer. The number of positive and negative unique markers was 103 and was useful in identifying 24 genotypes out of the 29 accessions. The total number of amplicons generated by the 5 AFLP combinations was 422 with 376 polymorphic amplicons revealing 89% polymorphism and an average of 84.4 amplicon per primer combination. A total of 61 unique markers discriminated 26 accessions. In this study, 3 SSR primer pairs were selected based on the robust amplification of fragments with okra DNA. A total of 11 amplicons were obtained, 5 were polymorphic resulting in 45% polymorphism. Only one unique negative marker clearly identified one accession.

Genetic similarity matrices estimated from ISSR, AFLP and SSR data, showed similarity coefficients to range from 0.68 – 0.90, 0.57 – 0.91, and 0.70 – 0.10, respectively. In all three molecular markers systems (ISSR, AFLP, and SSR), the highest similarity coefficient was between accessions collected from the same governorate, while the lowest similarity coefficient was obtained between accessions from different governorates. Generally, the constructed dendrograms based on the two types of markers, ISSR and AFLP, exhibited a tendency to cluster accessions in groups according to their geographical locations. The level of genetic diversity estimated within each groups was: Sohag 30%, Qena 28%, North Sinai 23%, and El Behira 20%. In conclusion, additional okra germplasm needs to be collected from

other locations and characterized to ensure the representation of most of the genetic diversity is conserved *ex situ*.

Key words: Okra *Abelmoscus esculantus*, ISSR, SSR, AFLP, genetic variation, genetic polymorphism, genetic distance, similarity coefficient.

ACKNOWLEDGMENT

First I wish to thank **Allah** for all the favors and for prosperity and patience to achieve this study.

I would like to express my deepest thanks to Prof. **Dr. Hanaiya El Itriby** Prof. of Genetics, National Gene Bank, Agricultural Research Center, for her constructive criticism, providing all needed facilities, sincere help criticism, kind encouragement and helpful instructions.

I wish to express my deep gratitude and sincere appreciation to **Prof. Dr. Rania A. Younis**, Prof. of Genetics, Faculty of Agriculture, Ain Shams University for the best acquisition, continuous supervision, kind encouragement, sincere help criticism and precious advices during the progress of thesis work and the preparation of the manuscript.

I would like to express my deepest thanks to late **Dr. Taha Hussein** Prof. of Genetics, National Gene Bank, Agricultural Research Centre, for his support.

My deepest thanks to the staff members of National Gene Bank, Agricultural Research Centre, for the continuous encourage and support.

Finally, I am deeply indebted to **my parents** and **my family** for their support, continuous encouragement and praying for me.

CONTENTS

Introduction Review of literature 1-Collecting and conserving plant genetic resources of Okra	Page 1 5 5
2-Morphological characterization	8
a- Qualitative Characters	9
b- Quantitative Characters	13
3- Molecular Characterization	17
1-Co-Dominant Marker	17
- SSR Markers	17
2- Dominant Marker	25
1- ISSR Marker	25
2- AFLP Markers	41
MATERIALS AND METHODS	53
1- Materials	53
1-Morphological Characterisation	54
a- UPOV descriptor	54
2-Molecular Characterization	58
1-Extraction and Purification of Genomic DNA	58
2- Estimation of DNA concentration	58
3- Dominant Markers	59
1-Inter Simple Sequence Repeats (ISSR)	59
ISSR PCR Reactions and Thermocycling Profile	60
Amplified Fragment Length Polymorphisms (AFLP)	61

AFLP reactions	61
Detection of AFLP products	63
Gel staining using silver nitrate	64
Co-Dominant Markers	64
Simple Sequence Repeats DNA (SSR)	64
SSR PCR Reactions and Thermo cycling Profile	65
RESULTS AND DISCUSSION	67
Morphological Characterization	67
1- Quantitative Morphological Characters	67
2-Qualitative Morphological Characters	74
Molecular Characterisation	86
-ISSR-PCR Marker	86
- AFLP-PCR Marker	96
-SSR-PCR Marker	105
The combined similarity matrix of the 29 okra accessions based on	111
ISSR and AFLP markers	
The combined dendrogram of the 29 okra accessions based on ISSR	112
and AFLP markers	
Variations within the okra accessions collected from the same	113
governorate	
SUMMARY	119
References	
Arabic Summary	

LIST OF TABLES

Table No	Title	Page
1	The NGB code number of the okra accessions, the governorate and location of the collected samples	53
2	The 22 characters studied according to UPOV descriptor, (1999)	55
3	ISSR primer names, sequence, and annealing temperature (Ta)	59
4	List of AFLP combinations used	62
5	SSR primer names, sequence and annealing temperature (Ta)	64
6	Mean values and Standard Errors (SD) of the quantitative characters of the 29 okra accessions (Abelmoscus esculantus L.) accessions	70
7	cont. Mean values and Standard Errors (SD) of the quantitative characters of the 29 okra accessions (Abelmoscus esculantus L.) accessions	72
8	Qualitative characters for the 29 okra accession recorded during the two seasons summer 2009 and 2010	83
9	Cont. Qualitative characters for the 29 okra accession recorded during the two seasons summer 2009 and 2010	84
10	Primer name, total number of amplicons, size of amplified fragments, number of monomorphic amplicons, number of polymorphic amplicons, and the percentage of polymorphism	87
11	Total ISSR unique markers, positive and negative unique markers for the 29 okra accessions under study	90
12	The similarity matrix of the twenty nine okra accessions based on ISSR markers.	94
13	Primer combinations, total number of amplicons, number of monomorphic amplicons, number of polymorphic amplicons, and the percentage of polymorphism as revealed by AFLP markers among okra accessions.	98

14	Accessions characterised by unique positive and negative AFLP markers, marker size and total	99
	number of markers identified each individual	
	accession (based on 5 AFLP primer	
	combinations).	
15	The similarity matrix of the 29 okra accessions	102
	based on AFLP primer combinations	
16	SSR primer name, total number of amplicons, size	106
	of amplified fragments, and percentage of	
	polymorphism	
17	Unique markers results from SSR Primers	106
18	The similarity matrix for the 29 okra accessions	108
	based on SSR markers	
19	The combined similarity matrix for the 29 okra	111
	accessions based on ISSR and AFLP markers	
20	The number of the accessions collected from each	113
	governorate	
21	the combined similarity matrix and dendrogram	114
	for 8 accessions collected from Sohag	
22	The combined similarity matrix and dendrogram	115
	for 11 accessions collected from Qena	
23	the combined similarity matrix and dendrogram	115
	for 2 accessions collected from North Sinai	
24	the combined similarity matrix and dendrogram	116
	for 2 accessions collected from El Behira	

LIST OF FIGURES

No	Title	Page
1a	Shows plant degree of branching % of the okra accessions	74
1b	Shows plant degree of branching of the okra accessions	75
2	Shows plant growth habit of the okra accessions	75
3a	Shows stem colour % of the okra accessions	76
3b	Shows intensity of the stem colour of the okra accessions	76
4	Shows leaf depth of lobing of the okra accessions	77
5	Shows flower petal colour of the okra accessions	79
6	Shows the different fruit colour of the okra accessions	80
7	Shows the fruit surface between ridges of the okra accessions	80
8	Shows the constriction of the fruit basal part of the okra accessions	81
9	Shows the shape of the fruit apex the okra accessions	81
10	ISSR-PCR amplified products using primer 853 for the twenty nine okra accessions, M: 100bp ladder	87
11	Dendrogram for the 29 okra accessions constructed from ISSR data using UPGMA and similarity matrix	95
12	The AFLP amplified profile by primer combination E-AAG \ M-CAG for the 29 okra accessions (1-15 left, 16-29 right). M: 100bp ladder.	97
13	Dendrogram for the twenty nine okra accessions based on similarity matrix using UPGMA method	103
14	Amplified alleles with primer MTIC 14 for the 29 okra accessions (top left 1-15 and right 16-29) and primer MTIC 82 (bottom left and right	107
15	The dendrogram of the 29 okra accessions based on SSR markers	109
16	The dendrogram for the twenty nine okra accessions based on the combined analysis of ISSR and AFLP markers	112

17	The combined similarity matrix and dendrogram for	114
	8 accessions collected from Sohag.	
18	The combined similarity matrix and dendrogram for	115
	11 accessions collected from Qena	
19	the combined similarity matrix and dendrogram for	115
	2 accessions collected from North Sinai	
20	the combined similarity matrix and dendrogram for	116
	2 accessions collected from El Behira	

I- INTRODUCTION

The cultivated okra (*Abelmoschus esculentus L.*) which is commonly known as 'Lady's fingers', 'Gumbo', 'Bamia', belongs to the *Malvaceae* family. The crop is a native of Africa and is still found growing wild around the River Nile as well as Ethiopia, in tropical and sub-tropical areas (Kochhar, 1986). It was taken to other parts of the world by the Portuguese (Sinnadurai, 1992). It can grow all the year round, but in Egypt its production is mainly concentrated during the summer season. India, Costa Rica, Nigeria and Ghana are among the major producers of okra (NARP, 1993).

The world okra production, as of 2007, was estimated at 4.8 million tons with India leading the production by 70% followed by Nigeria (15%), Pakistan (2%), Ghana (2%), Egypt (1.7%) and Iraq (1.7%) according to Gulsen *et al.*, 2007.

Okra was previously included in the genus *Hibiscus*. Later, it was designated to *Abelmoschus* (Kundu and Biswas, 1973; Terrell and Winters 1974). Although about 50 species have been described, eight of them are most widely accepted (Borssum, 1966; IBPGR, 1990). There is significant variation in the chromosome numbers and ploidy levels in *Abelmoschus*. The lowest chromosome number known is 2n = 56 for *A. angulosus* (Ford, 1938) and the highest are close to 200 for *A. caillei* (Siemonsma, 1982). Even within *A. esculentus*, chromosome numbers vary from 2n = 72, 108, 120, 132 and 144 which are in regular series of polyploids with n = 12 (Dutta and Naug, 1968).

Contradicting evidence exists on the geographical origin of A. esculentus. One putative ancestor (A. tuberculatus) is native to Uttar Pradesh in North India, suggesting that A. esculentus originated in India. The other evidence is based on the plants cultivation in ancient times, and the presence of another putative ancestor (A. ficulneus) in East Africa, suggesting northern Egypt and Ethiopia as the geographical origin of A.esculentus. So far A. caillei (2n = 196 to 200) has been located only in