

Equivalent Intraperitoneal to Orally Administered Doses of Ibuprofen on Dose Response Curve for Analgesia and Prostaglandin Inhibitory Effect in Mice

Thesis submitted for partial fulfillment of M.Sc. in Pharmacology.

By

Raghda Abd el Aziz Mohammed Salama MB. BCh. 2009

Supervised by

Prof. Sonia Salib Georgy

Professor of pharmacology Faculty of Medicine - Ain Shams University

Dr. May Ahmed Amin Hamza

Assistant Professor of pharmacology Faculty of Medicine - Ain Shams University

Dr. Nesreen Hamdy Lotfy El gayar

Lecturer of pharmacology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2015

Acknowledgment

I want to express my profound gratitude and sincere thanks to Prof. Dr. Sonia Salib for giving me the honour of working under her supervision, for her kind advice, guidance & continuous encouragement throughout the present work.

I want to express my profound gratitude and sincere thanks to Assistant Prof. Dr. May Hamza for her valuable supervision, for giving me much of her time and experience, for teaching me important laboratory skills, statistical analysis skills & important skills in thesis writing, for her kind continuous guidance, continuous encouragement and concern throughout the present work.

I want to express my profound gratitude and sincere thanks to Lecturer Dr. Nesreen El gayar for her valuable supervision, for her important advices in thesis writing, for her kind continuous guidance, valuable help and her persistent encouragement throughout the present work.

I wish to express my profound gratitude and sincere thanks to all my professors my senior staff and all my colleagues in the Pharmacology department, Faculty of Medicine, Ain Shams University for giving me much of their experience, great encouragement and helpful advices throughout the work.

I wish to express my profound gratitude and sincere thanks to lab assistant Mr. Ahmed Salama for the effort he had done and his accuracy throughout the work.

I would like to extend my thanks to all my family for their support and encouragement.

Contents

Page
Review of literature:
• Non steroidal anti-inflammatory drugs1
Various types of NSAIDs2
Mechanism of action3
Prostaglandins10
Uses of NSAIDs25
Adverse reactions of NSAIDs30
• Ibuprofen36
Pharmacokinetics of ibuprofen37
Ibuprofen intraperitoneally in mice40
Ibuprofen in drinking water in mice41
Ibuprofen in diet in mice42

Aim of the work	44
Materials & Methods	46
Results	60
Discussion	124
Summary and conclusion	142
References	145
Abstract	171

List of Figures

Figure	Content	Page	
number			
	Figures of review		
1	COX-1 and COX-2 blocked by the NSAID	7	
2	Cyclooxygenases and arachidonic acid metabolism	12	
3	Direct PG effects on membrane currents in capsaicin-sensitive cells	15	
4	Direct PG effects on release of mediators	16	
5	Coupling of IP and EP receptors to intracellular second messenger systems	18	
6	Platelet aggregation process	21	
	Figures of materials & methodes		
7	(7a) Midline longitudinal incision in the plantar aspect of hind paw	53	
	(7b) Elevated glass chambers with wire mesh floors	54	
	(7c) Von Frey filaments	54	
	Figures of results		
8	(8a) Pain related behaviour over an hour after formalin injection in control mice	63	
	(8b) The sum of pain related behaviour scores after formalin injection in control mice		

9	(9a) Effect of different i.p. doses of ibuprofen over an hour on formalin induced pain related behaviour in mice	66
	(9b) The sum of pain related behaviour scores of different i.p. doses of ibuprofen after formalin injection	67
10	(10a) Effect of different doses of ibuprofen in drinking water over an hour on formalin induced pain related behaviour in mice	70
	(10b) The sum of pain related behaviour scores of different doses of ibuprofen in drinking water after formalin injection	71
	(10c) Phase 2a dose response curve and equivalent i.p. doses to different doses of ibuprofen administered in drinking water	72
11	(11a) Effect of different doses of ibuprofen in diet over an hour on formalin induced pain related behaviour in mice	75
	(11b) The sum of pain related behaviour scores of different doses of ibuprofen in diet after formalin injection	76
	(11c) Phase 2a dose response curve and equivalent i.p. doses to different doses of ibuprofen administered in diet	77
12	Difference in the 60% mechanical threshold between the two limbs in the naïve and incised groups	80
13	(13a) Difference in the 60% mechanical threshold between two limbs in the incised and i.p. ibuprofen treated groups	83
	(13b) Area under the difference in the 60% mechanical threshold between two limbs time	83

	curve in the incised and i.p. ibuprofen treated groups	
14	(14a) Difference in the 60% mechanical threshold between two limbs in the incised group and group treated with ibuprofen in drinking water	87
	(14b) Area under the difference in the 60% mechanical threshold between two limbs time curve in the incised and group treated with ibuprofen in drinking water	87
	(14c) Difference between the two limbs in the area under the mechanical threshold time curves dose response curve and equivalent i.p. doses to different doses of ibuprofen administered in drinking water	88
15	(15a) Difference in the 60% mechanical threshold between two limbs in the incised group and group treated with ibuprofen in diet	92
	(15b) Area under the difference in the 60% mechanical threshold between two limbs time curve in the incised and group treated with ibuprofen in drinking water	92
	(15c) difference between the two limbs in the area under the mechanical threshold time curves dose response curve and equivalent i.p. doses to different doses of ibuprofen administered in diet	93
16	Spinal PGE2 in the naïve and incised control groups	95
17	Spinal PGE2 concentration in the incised and i.p. ibuprofen treated groups.	98
18	(18a) Spinal PGE2 concentrations in the incised and ibuprofen in drinking water treated groups	101

	(18b) Spinal PGE2 dose response curve and equivalent i.p. doses to different doses of ibuprofen administered in drinking water	
	Touproten administered in drinking water	102
19	(19a) Spinal PGE2 concentrations in the incised and ibuprofen in diet treated groups	105
	(19b) Spinal PGE2 dose response curve and equivalent i.p. doses to different doses of ibuprofen administered in diet	106
20	TXB2 concentration in the control, and i.p. ibuprofen treated groups.	108
21	(21a) TXB2 concentrations in the control and ibuprofen in drinking water treated groups	111
	(21b) TXB2 concentrations dose response curve and equivalent i.p. doses to different doses of ibuprofen administered in drinking water	112
22		
22	(22a) TXB2 concentrations in the control and ibuprofen in diet treated groups	115
	(22b) TXB2 concentrations dose response curve and equivalent i.p. doses to different doses of ibuprofen administered in diet	116
23	Weight corrected average daily water consumption in control group and in groups treated with ibuprofen in drinking water	118
24	Scatter plot correlating the average daily water consumption to the mice body weight	119
25	Summary of equivalent i.p. doses to different doses of ibuprofen administered in drinking water or in diet	123

List of Tables

Table number	Content	Page	
	tables of review		
1	Different types of NSAIDs	4	
2	Most common indications for nonsteroidal antiinflammatory drug use	27	
	tables of results		
3	Effect of formalin injection (s.c.) in the dorsum of the hind paw in control mice	62	
4	Effect of different concentrations of ibuprofen on formalin induced pain related behaviour in mice	65	
5	(5a) Effect of different concentrations of ibuprofen in drinking water on formalin induced pain related behaviour in mice	69	
	(5b) Equivalent i.p. doses for ibuprofen administered in drinking water in formalin test	72	
6	(6a) Effect of different concentrations of ibuprofen in diet on formalin induced pain related behaviour in mice	74	
	(6b) Equivalent i.p. doses for ibuprofen administered in diet in formalin test	77	
7	Difference in 60% threshold (g) between two limbs in the naïve & incised groups	79	
8	Difference in 60% threshold (g) between two limbs in i.p. ibuprofen treated groups	82	

9	(9a) Difference in 60% threshold (g) between two limbs in mice treated with ibuprofen in drinking water	86
	(9b) Equivalent i.p. doses for ibuprofen administered in drinking water in mechanical allodynia	88
10	(10a) Difference in 60% threshold (g) between two limbs in mice treated with ibuprofen in diet	91
	(10b) Equivalent i.p. doses for ibuprofen administered in diet in mechanical allodynia	93
11	Spinal PGE2 concentrations (pg/mg) in the naïve & control groups	94
12	Spinal PGE2 concentrations (pg/mg) in ibuprofen treated groups	97
13	(13a) Spinal PGE2 concentrations (pg/mg) in mice treated with ibuprofen in drinking water	100
	(13b) Equivalent i.p. doses for ibuprofen administered in water in Spinal PGE2 concentrations	102
14	(14a) Spinal PGE2 concentrations (pg/mg) in mice treated with ibuprofen in diet	104
	(14b) Equivalent i.p. doses for ibuprofen administered in diet in Spinal PGE2 concentrations	106
15	TXB2 concentrations (pg/ml) in ibuprofen treated groups	107
16	(16a) Serum TXB2 concentration (pg/ml) in mice treated with ibuprofen in drinking water	110
	(16b) Equivalent i.p. doses for ibuprofen	

	administered in drinking water in Serum TXB2 concentration	112
17	(17a) Serum TXB2 concentration (pg/ml) in mice treated with ibuprofen in diet	114
	(17b) Equivalent i.p. doses for ibuprofen administered in diet in Serum TXB2 concentration	116
18	Weight corrected average daily water consumption in ml/g/day	117
19	Summary of mean % change from control values resulting from i.p. doses of ibuprofen in different tests performed	121
20	Summary of equivalent i.p. doses in mg/kg BW for ibuprofen administered in diet and drinking water in different tests performed	122

List of abbreviations

AD	Alzheimer's disease
ADP	adenosine diphosphate
ANOVA	Analysis of variance
AUC	area under the curve
BCG	Bacillus Calmette-Guérin
BW	Body wieght
cAMP	Cyclic adenosine mono phosphate
CGRP	calcitonin gene-related peptide
COX	cyclooxygenase
coxibs	selective COX-2 inhibitors
CYP	Cytochrome P450 enzymes
DAG	diacylglycerol
DRG	dorsal root ganglia
ECM	extracellular matrix
EIA	Enzyme Immunoassay
ELISA	enzyme-linked immunosorbent assay
ERPF	effective renal plasma flow
GFR	glomerular filtration rate
i.p.	intraperitoneal
IC50	Inhibitory concentration
IL-1β	interleukin 1β
IL-6	interleukin 6
IP3	inositol triphosphate
kD	kilodalton
LD	lethal dose

log	logarithm
LOX	lipoxygenases
NO	nitric oxide
NSAIDs	Non steroidal anti-inflammatory drugs
OTC	over the counter
PGE ₂	prostaglandin E ₂
PGI ₂	prostacyclin
PGs	prostaglandins
PKA	protein kinase A
PLC	Phospholipase c
PRB	pain related behaviour
S.C.	subcutaneous administration
S.E.M	standard error of the mean
S1P	Sphingosine 1-phosphate
SD	standard deviation
TNFα	tumor necrosis factor-α
TTX	tetrodotoxin
TX	thromboxane
vWF	Von Willebrand factor

Non steroidal anti-inflammatory drugs

For centuries, non steroidal anti-inflammatory drugs (NSAIDs) have been part of clinical practice. NSAIDs originally used as drugs with anti-inflammatory and analgesic effect, are now used for new therapeutic targets, some of which are unrelated to their primary mode of action. NSAIDs, as a group, have expanded to include a large number of compounds, supporting their efficacy in the treatment of different pathologies ranging from pain and inflammation to prevention and treatment of cancer (**Pountos et al., 2011**).

Hippocrates, the father of modern medicine, was the first to record descriptions of therapeutic benefits of extracts of willow bark and other plant sources of salicylates, 2400 years ago. He recommended chewing willow leaves for analgesia during labour and the juice of the poplar tree for eye diseases (Mueller and Scheidt, 1994). There was no real progress in the synthesis and use of NSAIDs until the chemical synthesis of salicylic and acetylsalicylic acids by Charles Gerhardt in 1853 and in 1897 by Felix Hoffmann (Rainsford, 2007; Mullar and Scheidt, 1994). Indomethacin and ibuprofen were developed in the 1960s. As ibuprofen is approved as over-the-counter drug, it is widely used (Rainsford, 2007). A large number of NSAIDs have been introduced in recent years and a second breakthrough in the

development of NSAIDs was the discovery of the cyclo-oxygenase-2 (COX-2) isoform and the development of the selective COX-2 inhibitors (coxibs) at the beginning of the 21st century (*Rainsford*, 2013).

Naturally, with the large number of NSAIDs in the market and post marketing surveillances, many of them have been withdrawn or have disappeared from the market (*Rainsford*, 2013). However, NSAIDs remain of the most commonly used medications, with approximately 70% of people aged 65 years or older are reported to use NSAIDs at least once per week (*Talley et al.*, 1995). In the US alone, prescriptions for NSAIDs exceed 111 million every year, with an approximate cost of \$4.8 billion (Laine, 2001).

Various types of NSAIDs

Despite the differences in their chemical structures, NSAIDs share many properties especially in their use as analgesics. For example, all NSAIDs have a ceiling effect that limits their efficacy in severe increasing pain. Studies failed to clearly classify NSAIDs in-terms of efficacy, since patient response to NSAIDs varies. In other words, if a patient does not respond to an NSAID, other NSAIDs can be tried. In most cases, the side-effects profile will determine NSAID selection rather than minor differences in efficacy (Green, 2001).