

Biochemical Study on the Hepatoprotective Activity of Sea Cucumber (*Holothuria*) Extract in Rats

Thesis Submitted By:

Elham Abd El-Badiea Mahmoud Rashwan

(B.Sc. in Biochemistry, 2006)

In Partial Fulfillment of the Degree of Master of Science

In Biochemistry

Under the Supervision of

Prof. Dr. Amr Youssef Ezz El-Din Esmat

Head of Biochemistry Department Faculty of Science, Ain Shams University

Prof. Dr. Amel Ali Soliman

Professor of Histology
Faculty of Medicine, Ain Shams University

Dr. Mahmoud M. Said Abd El-Hamid

Lecturer of Biochemistry
Faculty of Science, Ain Shams University

﴿ هَالُواْ سُنْ حَانَكَ لاَ عِلْمَ لَذَا إِلاَّ مَا عَلَمُ الْحَكِيمِ الْعَلِيمُ الْحَلِيمُ الْحَلْمُ الْحُلْمُ الْحَلْمُ الْحُلْمُ الْحَلْمُ الْحَلْمُ الْحَلْمُ الْمُلْمُ الْحَلْمُ الْحَلْمُ الْحَلْمُ الْحَلْمُ الْحُلْمُ الْمُعُلِمُ الْمُعُلِمُ الْمُلْمُ

صَّنْ وَاللَّهُ اللَّهُ الْعُظَمِينَ،

سورة البقره الأيه (٣٢)

Faculty of Science Biochemistry Department

Biography

Name Elham Abd El-Badiea Mahmoud Rashwan

Date of Graduation May 2006, Faculty of Science

Biochemistry Department Ain Shams University

Degree awarded B.Sc. in Biochemistry

(Excellent with Honor Degree)

Occupation Demonstrator in Biochemistry Department

Faculty of Science Ain Shams University

Declaration

This thesis has not been submitted for a degree at this or any other university

Elham Abd El-Badiea Mahmoud

Dedication

I would like to dedicate this thesis to whom I am greatly indebted.

.....To my father's spirit
.....To my mother

(The merciful, supportive and beloved persons in my life).
.....To every member in my family for his endless love, support and concern.

Acknowledgements

First and foremost many thanks are due to Almighty **GOD**, the most Merciful, to Whom I owe support and success in my whole life.

It is really difficult for me to find the suitable words that could express my deep gratitude and sincere appreciation towards **Prof. Dr. Amr Youssef Ezz El-Din Esmat**, Professor and Head of Biochemistry Department, Faculty of Science, Ain Shams University, for suggesting the point and for his perpetual guidance, creative thinking, valuable suggestions, fruitful discussion and profound revision of the results and discussion of the manuscript. Without his brilliant scientific ideas, tremendous concern and care, this thesis would not have been accomplished in this form.

I would like to express my thanks to **Prof. Dr.Amel Ali**Soliman, Professor of Histology, Faculty of Medicine, Ain Shams
University, for her help with the histological studies.

My sincere gratitude is also extended to **Dr. Mahmoud Mohamed Said**, Lecturer of Biochemistry, Faculty of Science, Ain

Shams University, for his kind help, patience, creative thinking,

constant guidance, sincere encouragement, valuable advice and criticism.

Also, I would like to thank **Prof. Dr. Khaled Farouk El-Masry**, Professor of Biochemistry, Department of Aroma and Flavors, National Research Center for his help with the HPLC analysis.

My deepest thanks are also due to **Dr. Mohammed Zaki**,

Marine Biochemistry Laboratory, National Institute of

Oceanography and Fisheries (NIOF), Suez and Aqaba Gulfs

branch, for kindly providing me with the sea cucumber samples.

Biochemical Study on the Hepatoprotective Activity of Sea Cucumber (*Holothuria*) Extract In Rats

Elham Abd El-Badiea Mahmoud Rashwan

ABSTRACT

In study, high the performance liquid present chromatography analysis of aqueous and mixed extracts of sea cucumber (Holothuria atra) body wall revealed the presence of some active phenolic compounds at variable concentrations (chlorogenic acid, pyrogallol, rutin, catechin, cinnamic acid, ellagic acid, and coumaric acid), as well as vitamin C. The mixed extract has demonstrated higher antioxidant and iron chelating activities, as well as inhibition of lipid peroxidation than the aqueous one in a cell-free system. The hepatoprotective activity of the sea cucumber mixed extract was furtherly evaluated against thioacetamide-induced liver fibrosis in rats. Subchronic oral administration of sea cucumber mixed extract (14.40 mg/Kg b.w.) to normal rats thrice weekly for 8 consecutive weeks did not show any toxic side effects on the central nervous system, heart beat rate, or depth of respiration of the host, whereas enhanced hepatic superoxide dismutase and glutathione peroxidase activities. Coadministration of sea cucumber extract and thioacetamide (protection modality) normalized serum direct bilirubin, alanine

and aspartate aminotransferases activities, as well as hepatic malondialdehyde, reduced glutathione, hydroxyproline concentrations and antioxidant enzyme activities. Histological examination of hematoxylin and eosin-stained liver sections of the protective group showed a substantial attenuation in the degenerative changes induced by thioacetamide intoxication. In conclusion, the sea cucumber mixed extract has shown a significant hepatoprotective activity against TAA intoxication, which might be due to its content of active phenolic compounds.

Key words: Holothuria atra, HPLC analysis, In vitro antioxidant studies, Thioacetamide, Biochemical studies, Histological studies, Rats.

CONTENTS

	Page
List of abbreviations	I
List of Tables	V
List of Figures	VIII
Introduction and Aim of the Work	1
Chapter I: Review of Literature	5
Characteristics and anatomy of sea cucumbers	8
Scientific classification of sea cucumbers	12
Defense mechanisms of sea cucumbers	18
Reproduction in sea cucumbers	20
Bioactive compounds of sea cucumbers	23
Nutritional and medicinal uses of sea cucumbers	32
Importance of sea cucumbers in the ecosystem	35
The liver	37
Liver fibrosis	39
Drug-induced liver injury	42
General pathways leading to hepatocellular injury	46
Role of oxidative stress in liver fibrosis	54
Lipid peroxidation	57
Defense mechanisms of the cell against oxidative stress	60
Phenolic compounds as antioxidants	66

Chapter II: Materials & Methods

Sea cucumber samples	69
Preparation of sea cucumber extracts	70
I. Chemical Studies	
Experiment (1): Determination of total soluble protein content	71
Experiment (2): Quantitative determination of total carbohydrates content	74
Experiment (3): Determination of total lipids content	77
Experiment (4): HPLC Analysis of sea cucumber extracts	79
II. In Vitro Antioxidant Studies	
Experiment (1): Determination of nitric oxide radical scavenging activity	81
Experiment (2): Determination of free radical scavenging activity	83
Experiment (3): Determination of ferrous ions (Fe ²⁺) chelating activity	85
Experiment (4): Determination of inhibitory activity of lipid peroxidation	87
III. Toxicity Study	91
IV. Biochemical Studies	93
A) Blood Analysis	
Experiment (1): Determination of serum direct bilirubin	97
Experiment (2): Determination of serum alanine aminotransferase and aspartate aminotransferase activities	98
Experiment (3): Determination of serum alkaline phosphatase (ALP) activity	10
Experiment (4): Determination of serum total protein concentration	10

Experiment (5): Quantitation of serum proacetate electrophoresis	
B) Tissue Analysis	
Experiment (1): Determination of hepatic Concentration	• • • • • • • • • • • • • • • • • • • •
Experiment (2): Determination of hepatic Concentration	` ,
Experiment (3): Determination of hepatic Activity	-
Experiment (4): Determination of hepatic Activity	_
Experiment (5): Determination of hepatic	catalase activity
Experiment (6): Determination of hepatic	hydroxyproline concentration.
Experiment (7): Determination of hepatic	triacylglycerols concentration.
Experiment (8): Determination of hepatic	total protein concentration
Experiment (9): Extraction of nucleic acid	s from the liver tissue
Experiment (10): Determination of hepatic	c RNA concentration
Experiment (11): Determination of hepatic	c DNA concentration
Experiment (12): Determination of hepatocucumber mixed extract	• '
V. Histological Studies	
VI. Statistical Analysis	
Chapter III: Results	
Chapter IV: Discussion	
Conclusions	

Recommendations	234
Summary	235
References	241
Appendix	300
Arabic summary	

List of Abbreviations

AOS	Activated oxygen species
ATP	Adenosine triphosphate
ALT	Alanine Aminotransferase
A/G	Albumin/globulin
ALP	Alkaline Phosphatase
AFC	Antibody-forming cell
ARE	Antioxidant response element
AST	Aspartate Aminotransferase
ВНА	Butylated hydroxyanisole
CAT	Catalase
CCL21	C-C chemokine ligand 21
СК	Creatine kinase
СҮР	Cytochrome P450
DBD	DNA-binding domain
DHBS	3,5-Dichloro-2-hydroxybenzenesulfonic acid
DTNB	5, 5'-Dithiobis-2-nitrobenzoic acid
DPPH	α, ā -Diphenyl-β-picrylhydrazyl radical
DHA	Docosahexaenoic acid
EPA	Eicosapentaenoic acid
EGFR	Epithelial growth factor receptor

EGF	Epidermal growth factor
ECM	Extracellular matrix
FGFR	Fibroblast growth factor receptor-1
FMO	Flavin-containing monooxygenase
FFA	Free fatty acids
FucCS	Fucosylated chondroitin sulphates
GAGs	Glycosaminoglycans
GST	Glutathione S-transferase
GR	Glutathione reductase
GCS	γ-glutamylcysteine synthetase
GS	GSH synthetase
GGT	γ-Glutamyl transferase
HCV	Hepatitis C virus
HSC	Hepatic stellate cell
HGF	Hepatocyte growth factor
HPLC	High-performance liquid chromatography
4-HDA	4-Hydroxyalkenals
8-OHdG	8-Hydroxy-2'-deoxyguanosine
IGF	Insulin-like growth factor
IFN	Interferon
IL	Interleukin
LDH	Lactate dehydrogenase
LOX	Lipoxygenase