Circulating Endothelial Progenitor Cells and Aortic Wall Changes in Male Wistar Rat Exposed to Chronic Mild Stress and High Fat Diet with the Possible Role of Pentoxifylline. Histological, Immunohistochemical and Flowcytometric Study

Thesis

Submitted for Partial Fulfillment of M.Sc. Degree in Histology

By Jolly Mounir William Labib

Demonstrator of histology, Dept. of Histology, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Kawthar Abd El-Rahim Farrag

Professor of Histology Head of Histology Department Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmed M. Abdel-tawab

Professor of Pharmacology and Therapeutics Faculty of Medicine, Ain Shams University

Prof. Dr. Mohamed Abd Elrahman Ahmed

Professor of Histology Faculty of Medicine, Ain Shams University

> Histology Department Faculty of Medicine Ain Shams University Cairo, Egypt 2012

First and foremost, I would like to thank **God** who gave me power to finish this work and for putting people in my way to help me achieve this success.

It is a pleasure to thank those who have made this thesis possible. I would like to thank my primary supervisor, **Prof. Dr. Kawthar Abd El-Rahim Farrag**, Head of Histology Department, Faculty of Medicine, Ain Shams University, whose scientific guidance has enabled me to complete the work.

Likewise, I would like to thank my supervisors, **Prof. Dr.**Ahmed M. Abdel-tawab, Professor of Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University and **Prof. Dr. Mohamed Abd Elrahman Ahmed,** Professor of Histology, Faculty of Medicine, Ain Shams University whose great experience and scientific knowledge have been invaluable. I would like also to extend my gratitude to **Ass. Professor Dr. Sawsan Aboul Fotouh El-Said,** in the Pharmacology and Therapeutics department for her practical help and advice, and for making my thesis experience a productive one.

I would like to acknowledge the help of **Dr. Amal Farouk**Mohamed (Fellow Clinician of Clinical Pathology Department,
Faculty of Medicine, Ain Shams University) who conducted the
laboratory work of flow cytometry section in this thesis and aided
in its analysis. I wish to express my gratitude to Mrs. Nassa, the
animal handler for her patience and cooperation through the course
of the study. Also, special thanks to Mr. Omar El-Tabal, the sixth
year medical student at Faculty of Medicine, Ain Shams
University, for his help in recording behavioral tests in this study.

I also wish to express my respect for all my professors \mathcal{L} colleagues in the histology department for their considerate cooperation and friendship.

Lastly, and very importantly, I am forever indebted to my parents, my sisters, and my husband. Without their support, encouragement and understanding, this thesis would not have been possible.

This work was financially supported by Ain Shams Faculty of Medicine "Grants Office", Grant No. 2/2011.

Jolly Mounir William Labib

LIST OF CONTENTS

Subject	Page
Acknowledgment	-
List of Abbreviations	II
List of Tables	IV
List of Figures	VI
List of Histograms	XI
Introduction	1
Aim of the Work	4
Review of Literature	5
Materials & Methods	25
Results	55
Discussion	143
Summary	166
Conclusion & Recommendation	172
References	173
Arabic Summary	

List of Abbreviations

AGE Advanced glycation end products

BBB Blood brain barrier

bFGF Basic fibroblast growth factor

BWG Body weight gain

CCT diet 4% cholesterol, 0.5% cholic acid, and 0.2%

thiouracil

CD133 Cluster of differentiation 133 CD31 Cluster of differentiation 31 CD34 Cluster of differentiation 34

CEPCs Circulating endothelial progenitor cells

CHF Congestive heart failure
CMS Chronic mild stress
CVD Cardiovascular diseases

DSM-IV Diagnostic and statistical manual of mental

disorders 4th edition

DSM-IV Diagnostic and statistical manual of mental

disorders, 4th ed.

FITC Fluorescein isothiocyanate

FST Forced swim test

G-CSF Granulocyte-Colony Stimulating Factor

HGF Hepatocyte growth factor

ICAM-1 Intercellular adhesion molecule 1

IEL Internal elastic lamina

IFN-α Interferon alpha IFN-γ interferon gamma

IGF-1 Insulin-like Growth Factor 1

IL-1 Interleukin-1
IL-10 Interleukin-10
IL-12 Interleukin-12
IL-13 Interleukin-13
IL-2 Interleukin-2
IL-4 Interleukin-4
IL-6 Interleukin-6

IL-8 Interleukin-8 IMI Imipramine

IMR Intima-media ratio

iNOS inducible Nitric Oxide Synthase

LDL Low Density Lipoproteins
MAOI Monoamine oxidase inhibitor
MDD Major depressive Disorder
MMPs Matrix metalloproteinases

NK cells Natural killer cells

NO Nitric Oxide OFT Open field test

oxLDL Oxidized Low Density Lipoproteins

PBS Phosphate buffered saline PDGF Platelet-derived growth factor

PE Phycoerythrin

PECAM Platelet endothelial cell adhesion molecule

PTX Pentoxifylline

RAGE Receptor of advanced glycation end products

ROS Reactive oxygen species

SDF-1α Stromal-derived factor 1 alpha

SEM Standard Error of Mean SIT Social interaction test SP Sucrose preference SPT Sucrose preference test

SSRIs Selective serotonin reuptake inhibitors

Tie-1 Tyrosine kinase receptor 1
Tie-2 Tyrosine kinase receptor 2

TIMP Tissue inhibitors of metalloproteinases

 $\begin{array}{ll} TNF\text{-}\alpha & Tumour \ necrosis \ factor \ alpha \\ TNF\text{-}\beta & Tumour \ necrosis \ factor \ beta } \\ VCAM\text{-}1 & Vascular \ adhesion \ molecule \ 1 \\ VE\text{-}cadherin & Vascular \ endothelial \ cadherin \\ \end{array}$

VEGF Vascular endothelial growth factor

VEGFR-2 Vascular endothelial cell growth-factor receptor 2

VLA-4 Very-late-antigen 4 vWF von Willebrand factor

List of Tables

Table	Title	Page
	Review of Literature	
1	Showing selected cytokines and their	8
	characteristics.	
	Materials and Methods	
1	Modified CMS protocol was applied in weeks 1	30
	and 2.	
2	Modified CMS model (week 3).	31
3	Modified CMS model (week 4).	32
4	Modified CMS model (week 5).	33
	Results	
1	Effect of CMS and CCT diet on SPT	57
2	Effect of CMS and CCT diet on FST	58
3	Effect of CMS and CCT diet on OFT	60
4	Effect of CMS and CCT diet on SIT	62
5	Effect of CMS and CCT diet on body weight	63
	gain	
6	Effect of CMS and CCT diet on IMR	83
7	Effect of CMS and CCT diet on the number of	85
	CEPCs in peripheral blood samples	
8	Effect of CMS and CCT diet on the expression	106
	of CD133, VEGFR-2 and TNF- α in the wall of	
	the thoracic aorta	
9	Effect of medication on SPT	108
10	Effect of medication on FST	110
11	Effect of medication on OFT	112
12	Effect of medication on SIT	114
13	Effect of medication on body weight gain	116
14	Effect of medication on IMR	128
15	Effect of medication on number of CEPCs in	130
	the peripheral blood samples	
16	Effect of medication on the expression of	141

Table	Title	Page
	CD133, VEGFR-2 and TNF-α in the wall of the	
	thoracic aorta	

List of Figures

Fig.	Title	Page
Review of Literature		
1	showing cytokine secretion and trafficking	10
	pathways in macrophages.	
2	showing regulation of CEPCs following the	15
	natural history of atherosclerosis.	
3	showing the journey of CEPCs through	18
	mobilization, migration and finally homing into	
	the vessel wall.	
	Materials and Methods	
1	Rats undergoing forced swim test (FST)	38
	behaviors.	
2	showing EPICS XL Flow Cytometer used in	47
	this study, found in the Clinical Pathology	
	Department, faculty of medicine, Ain Shams	
	University, Egypt.	
3	Simplifies the principle of Flow Cytometry.	48
4	Indirect double immunofluorescence staining	49
	using primary antibodies raised in two different	
	host species.	
Results		
1	A photomicrograph of a section in the rat aorta	66
	of the control group (H & E x 640).	
2	A photomicrograph of a section in the rat aorta	67
	of the control group (Orcein stain x 640).	
3	A photomicrograph of a section in the rat aorta	68
	of the control group (Masson Trichrome stain	
	x 640).	
4	A photomicrograph of a section in the rat aorta	70
	of the CMS group (H & E x 640).	

Fig.	Title	Page
5	A photomicrograph of a section in the rat aorta of the CMS group (H & E x 640).	71
6	A photomicrograph of a section in the rat aorta of the CMS group (Orcein stain x 640).	72
7	A photomicrograph of a section in the rat aorta of the CMS group (Masson Trichrome stain x 640).	73
8	A photomicrograph of a section in the rat aorta of the CCT group (H & E x 640).	75
9	A photomicrograph of a section in the rat aorta of the CCT group (Orcein stain x 640).	76
10	A photomicrograph of a section in the rat aorta of the CCT group (Masson Trichrome stain x 640).	77
11	A photomicrograph of a section in rat aorta of CMS-CCT group (H & E x 640).	79
12	Another photomicrograph of a section in the rat aorta of the CMS-CCT group (H & E x 640).	80
13	A photomicrograph of a section in the rat aorta of the CMS-CCT group (Orcein stain x 640).	81
14	A photomicrograph of a section in the rat aorta of the CMS-CCT group (Masson Trichrome stain x 640).	82
15	A photomicrograph of a section in the rat thoracic aorta in the control group (CD133 immunostaining + HX x 400 oil).	87
16	A photomicrograph of a section in the rat thoracic aorta in the control group showing the negative control of CD133 immunoreactivity (immunostaining+ HX x 400 oil).	88
17	A photomicrograph of a section in the rat thoracic aorta in the control group (VEGFR-2 immunostaining+ HX x 400).	89

Fig.	Title	Page
18	A photomicrograph of a section in the rat	90
	thoracic aorta in the control group showing the	
	negative control of the VEGFR-2 immuno-	
10	reactivity (immunostaining + HX x 400).	0.1
19	A photomicrograph of a section in a rat thoracic	91
	aorta in control group (TNF-α	
20	immunostaining+ HX x 1000 oil).	02
20	A photomicrograph of a section in a rat thoracic	92
	aorta in control group showing the negative control of TNF-α immunoreactivity	
	(immunostaining+ HX x 1000 oil).	
21	A photomicrograph of a section in the rat	94
21	thoracic aorta in the CMS group (CD133	
	immunostaining+ HX x 400).	
22	A photomicrograph of a section in the rat	95
	thoracic aorta in the CMS group (VEGFR-2	
	immunostaining+ HX x 400).	
23	A photomicrograph of a section in the rat	96
	thoracic aorta in the CMS group (TNF- α	
	immunostaining+ HX x 1000 oil).	
24	A photomicrograph of a section in the rat	98
	thoracic aorta in the CCT group (CD133	
2.5	immunostaining+ HX x 400).	0.0
25	A photomicrograph of a section in the rat	99
	thoracic aorta in the CCT group (VEGFR-2	
26	hotomicrograph of a section in the rat	100
26	A photomicrograph of a section in the rat thoracic aorta in the CCT group (TNF- α	100
	immunostaining+ HX x 1000 oil).	
27	A photomicrograph of a section in a rat thoracic	102
	aorta in CMS-CCT group (CD133	102
	immunostaining + HX x 400).	
28	A photomicrograph of a section in the rat	103
	thoracic aorta in the CMS-CCT group	

Fig.	Title	Page
	(VEGFR-2 immunostaining+ HX x 640).	
29	A photomicrograph of a section in the rat	104
	thoracic aorta in the CMS-CCT group (TNF- α	
	immunostaining+ HX x 1000 oil).	
30	Photomicrograph of a section in rat aorta of	119
	CMS-CCT-Imipramine group (H & E x 400).	
31	A photomicrograph of a section in the rat aorta	120
	of CMS-CCT-Imipramine group (H & E x	
	640).	
32	A photomicrograph of a section in the rat aorta	121
	of CMS-CCT-Imipramine group (Orcein stain	
	x 640).	100
33	A photomicrograph of a section in the rat aorta	122
	of CMS-CCT-Imipramine group (Masson	
2.4	Trichrome stain x 640).	101
34	A photomicrograph of a section in the rat aorta	124
	of CMS-CCT-Pentoxifylline group (H & E x	
25	640).	105
35	A photomicrograph of a section in the rat aorta	125
	of CMS-CCT-Pentoxifylline group (Orcein	
36	stain x 640).	126
30	A photomicrograph of a section in the rat aorta of the CMS-CCT-Pentoxifylline group (Orcein	120
	stain x 640).	
37	A photomicrograph of a section in the rat aorta	127
	of the CMS-CCT-Pentoxifylline group	14/
	(Masson Trichrome stain x 640).	
38	A photomicrograph of a section in the rat	133
	thoracic aorta in the CMS-CCT-Imipramine	133
	group (CD133 immunostaining+ HX x 400).	
39	A photomicrograph of a section in the rat	134
	thoracic aorta in the CMS-CCT-Imipramine	
	group (VEGFR-2 immunostaining+ HX x	
	640).	
	· · · · ·	·

Fig.	Title	Page
40	A photomicrograph of a section in a rat thoracic	135
	aorta in the CMS-CCT-Imipramine group	
	(TNF-α immunostaining+ HX x 1000 oil).	
41	A photomicrograph of a section in the rat	137
	thoracic aorta in CMS-CCT-Pentoxifylline	
	group (CD133 immunostaining+ HX x 400).	
42	A photomicrograph of a section in the rat	138
	thoracic aorta in the CMS-CCT-Pentoxifylline	
	group (VEGFR-2 immunostaining+ HX x	
	640).	
43	A photomicrograph of a section in the rat	139
	thoracic aorta in the CMS-CCT-Pentoxifylline	
	group (TNF-α immunostaining+ HX x 1000	
	oil).	

List of Histograms

Histogram	Title	Page
1	Effect of CMS and CCT diet on SPT	57
2	Effect of CMS and CCT diet on FST	59
3	Effect of CMS and CCT diet on OFT	61
4	Effect of CMS and CCT diet on SIT	62
5	Effect of CMS and CCT diet on body weight gain	64
6	Effect of CMS and CCT diet on IMR	84
7	Effect of CMS and CCT diet on the number	85
	of CEPCs in peripheral blood samples	
8	Effect of CMS and CCT diet on the	106
	expression of CD133, VEGFR-2 and TNF-	
	α in the wall of the thoracic aorta	
9	Effect of medication on SPT	109
10	Effect of medication on FST	111
11	Effect of medication on OFT	113
12	Effect of medication on SIT	115
13	Effect of medication on body weight gain	117
14	Effect of medication on IMR.	129
15	Effect of medication on the number of	131
	CEPCs in the peripheral blood samples	
16	Effect of medication on the expression of	141
	CD133, VEGFR-2 and TNF- α in the wall of	
	the thoracic aorta	

Introduction

Both neuropsychiatric disorders and cardiovascular diseases (CVD) constituted a huge burden on our society. According to World Health Organization (WHO) statistics, the three leading causes of mortality by the year 2030 were predicted to be acquired immunodeficiency syndrome, depressive disorders and ischemic heart disease (*Mathers and Loncar*, 2005).

A substantial body of literature provided strong evidence that a bidirectional association between mood disorders and cardiovascular diseases existed in humans, though the precise neurobiological mechanisms that underlie this association were not fully understood (*Grippo*, 2009; *Joynt et al.*, 2003).

Joynt et al. (2003) reported that coronary artery disease, myocardial infarction and congestive heart failure (CHF) were associated with altered mood states and depressive syndromes and were considered to be risk factors for cardiac morbidity and mortality.

On the other hand, seasonal mood changes have been correlated with seasonal variation in coronary heart disease, as *Sher* (2001) found that winter depression contributed to winter increase in incidence and mortality of cardiovascular disease. Patients with depression had more than two folds higher risk of developing heart failure and repeated hospital admissions as reported by *Pasic et al.* (2003). *Penninx et al.* (2001) showed that major depressive disorder (MDD) was associated with increased risk of cardiac mortality and the more severe the depression the greater the risk for subsequent cardiac mortality. Whereas, *Zellweger et al.* (2004) considered depression as a risk factor for cardiac events in patients with

1