Involvement of Inferior Vena Cava in Egyptian Patients with Budd-Chiari Syndrome: Frequency, Relation to Etiology, and Impact on Clinical Presentation

Thesis Submitted for Partial Fulfillment of Master Degree in Tropical Medicine

Ву

Mohamed Gaber Mohamed Hassan

M.B.B.Ch. Al-Azhar University

Under Supervision of

Prof. Dr. Mohammad Amin Sakr

Professor of Tropical Medicine Faculty of Medicine-Ain Shams University

Prof. Dr. Ahmad Kamal El Dorry

Professor of Radiodiagnosis Faculty of Medicine-Ain Shams University

Dr. Sara Mahmoud Abd El-Hakam

Lecturer of Tropical Medicine Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2011

R S S

र्किनी की र

{قَالُوا سُبُحَانَكَ لا عِلْمَ لَنَا إِلاَّ مَا عَلَمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ}

واللى العظيم مال والعقيم (البقرة:32)

Acknowledgement

First and foremost thanks to **ALLAH**, the most beneficent, the most merciful who tought man what he did not know and what is useful to him.

I wish to express my utmost thanks and gratitude to **Prof. Dr.**Mohammad Amin Sakr, Professor of Tropical Medicine, Ain

Shams University, for his sincere help, unfailing guidance, constant and continuous support and supervision in addition to useful suggestion that have been of great help during the course and finishing of this study.

I would like to express my deep thanks and gratitude to **Prof. Dr.Ahmad Kamal El-Dorry, Professor of Radiodiagnosis, Ain Shams University** for his cordial help, continuous encouragement and guidance throughout this work.

It is difficult to translate my gratitude towards **Dr. Sara Mahmoud Abd El-Hakam, Lecturer of Tropical Medicine, Ain Shams University,** for her sincere help, valuable guidance, continuous support and suggestion, which together enable me to complete this work.

I would like to extend my grateful thanks to all **professors**, colleagues and members of BCSG, for their great help, cooperation and support.

I would like to express my great thanks to the staff-members of Tropical Medicine department and all patients for their help, and cooperation.

Finally I am particularly and deeply grateful to my family, for their continuous prayers, without their encouragement, help, understanding and moral support, this work could not have been achieved.

LIST OF CONTENTS

Title	page no.	
LIST OF TABLES.	I	
LIST OF FIGUERS.	III	
LIST OF ABBREVIATIONS	v	
INTRODUCTION.	VII	
AIM OF THE WORK.	XII	
REVIEW OF LITERATURE		
■ CHAPTER 1: ANATOMICAL ASPECTS OF THE LIVER	1	
■ CHAPTER 2: HISTOLOGICAL ASPECTS OF THE LIVER	9	
■ CHAPTER 3: BUDD-CHIARI SYNDROME	11	
• CHAPTER 4: IVC INVOLVEMENT IN BCS	48	
■ CHAPTER 5: IMPACT OF IVC INVOLVEMENT ON CLINICA	L	
PRESENTATIONS OF BCS	67	
■ CHAPTER 6 : DIAGNOSTIC CONSIDERATIONS OF BCS	70	
• CHAPTER 7: PROGNOSIS OF BCS	89	
■ CHAPTER 8: TREATEMENT OF BCS	92	
• CHAPTER 9: BCS AND HCC	112	
PATIENTS AND METHODS	115	
RESULTS	130	
DISCUSSION	154	
SUMMARY	170	
CONCLUSIONS AND RECOMMENDATIONS		
REFERENCES		
A D A DICC CLIMANA A DAY		

LIST OF TABLES

Table	Page no.
TABLES IN THE REVIEW OF LITERATURE	
TABLE 1: AETIOLOGY OF BCS.: ACCORDING TO VALERIO 2010	14
TABLE 2: AETIOLOGY OF PRIMARY BCS:	
TABLE 3: AETIOLOGY OF SECONDARY BCS:	
TABLE 4: AETIOLOGY OF BCS: ACCORDING TO RAGESHREE 2010	
TABLE 5: UPDATED SAPPORO CLASSIFICATION CRITERIA	
TABLE 6: CLASSIFICATIOIN OF MPDS	
TABLE 7: WHO CLASSIFICATION OF MPDS	
TABLE 8: FRENCH-AMERICAN-BRITISH CLASSIFICATION OF MPD	s32
TABLE 9: TYPICAL LABORATORY FINDINGS	37
$\textbf{TABLE 10:} \ \textbf{PATTERN OF HVOO IN BCS FROM 8 INDIAN COUNTRIES}$	51
TABLE 11: SHOWS CLINICAL PRESENTATION OF IVCO, HVS, AND	COMBINED
INVOLVEMENT IN BCS	68
TABLE 12: COMMON PRESENTING SYMPTOMS OF BCS	69
TABLE 13: WARFARIN ANTICOAGULANT PREPARATION	95
TABLE 14: UNFRACTIONATED HEPARIN PROPERTIES	96
TABLE 15: LOW MOLECULAR WEIGHT HEPARIN (LMWH) PROPER	TIES97
TABLE 16: PREVALENCE OF LCF AND HCC IN PATIENTS WITH IVO	co112
TABLES IN THE RESULTS AND DISCUSSION	
TABLE 17: AGE AND GENDER DISTRIBUTION AMONG THE STUDIED PAT	TENTS130
TABLE 18: CLASSIFICATION OF PATIENTS ACCORDING TO THE O	NSET OF THE
DISEASE	130
TABLE 19: MAIN PRESENTING COMPLAINT OF THE STUDIED PAT	IENTS:132
TABLE 20: FREQUENCY OF DIFFERENT SYMPTOMS AND SIGNS IN	THE
STUDIED PATIENTS	

LIST OF TABLES

Table Page I	No.
$\textbf{TABLE 21:} \ \textbf{RESULTS OF THROMBOPHILIA SCREENING TESTS AND FREQUENCY } \\$	ENCY
OF ETIOLOGICAL FACTORS IN THE STUDIED PATIENTS	135
TABLE 22: BASELINE LABORATORY DATA OF THE STUDIED PATIENTS	137
TABLE 23: ASCITIC FLUID ANALYSIS OF THE STUDIED PATIENTS	138
TABLE 24: CHILD-PUGH SCORE CLASSIFICATION OF PATIENTS.	138
TABLE 25: HEPATITIS MARKERS IN THE STUDIED PATIENTS	139
$ \textbf{TABLE 26:} \ \textbf{ABDOMINAL SONOGRAPHIC FINDINGS OF THE STUDIED PATIENTS.}. \\$	139
TABLE 27: NUMBER OF OCCLUDED AND STENOTIC HVS	140
TABLE 28: CHARACTERISTICS OF HVS IN THE STUDIED PATIENTS; USING DUPLEX U/S.	
TABLE 29: THE STATUS OF IVC IN THE STUDIED PATIENTS	141
TABLE 30-A: DUPLEX U/S CHARACTERISTICS OF IVC IN THE STUDIED	
PATIENTS	142
TABLE 30-B: DUPLEX U/S CHARACTERISTICS OF IVC IN THE STUDIED	
PATIENTS	
TABLE 32: PATTERN OF IVC AND/OR HVS IN THE STUDIED PATIENTS	
TABLE 33: RELATION BETWEEN THE CLINICAL PRESENTATION AND THI	E
PATTERN OF VASCULAR (HVS AND/OR IVC) INVOLVEMENT IN THE	
STUDIED PATIENTS.	145
$\textbf{TABLE 34:} \ \textbf{RELATION BETWEEN THE SONOGRAPHIC FINDINGS AND THE}$	
PATTERN OF VASCULAR (HVS AND/OR IVC) INVOLVEMENT IN THE	
STUDIED PATIENTS.	146
TABLE 35: RELATION BETWEEN CHILD PUGH CLASSIFICATION AND PAT	TERN
OF VASCULAR (HVS AND/OR IVC) INVOLVEMENT IN THE STUDIED	
PATIENTS.	147
TABLE 36: RELATION BETWEEN THE ETIOLOGY AND THE PATTERN OF IN	
INVOLVEMENT IN THE STUDIED PATIENTS	148

LIST OF FIGURES

Figure Page no.	
FIGURES IN THE REVIEW OF LITERATURE	
FIGURE 1: SEGMENTAL ANATOMY OF THE LIVER	2
FIGURE 2: VASCULAR ANATOMY OF THE LIVER	3
FIGURE 3: THE PORTAL VEINS	5
FIGURE 4: PORTAL VEINS, HEPATIC VEINS, AND IVC	7
FIGURE 5: ANATOMY OF IVC	8
FIGURE 6: MICROVASCULAR ANATOMY OF THE LIVER	9
FIGURE 7: VIRCHOW TRIAD	58
FIGURE 8: SCHEMATIC DEPICTION OF SEQUELAE OF IVCT	61
FIGURE 9: HISTOPATHOLOGY OF MOVC	62
FIGURE 10: WEB IN IVC.	74
FIGURE 11: OCCLUSION OF IVC	74
FIGURE 12: HYPERTROPHY OF CAUDATE LOBE.	74
FIGURE 13: SHORT SEGMENT OBSTRUCTION IN IVC	79
FIGURE 14: STENOSIS OF IVC.	79
FIGURE 15: COLLATERAL VEINS IN BCS	79
FIGURE 16.: DIGITAL SUBTRACTION VENOGRAPHY (DSV)	82
FIGURE 17: DSV AP VIEW SHOWING COMPLETE OCCLUSION OF THE	
INTRAHEPATIC IVC	82
FIGURE 18: DSV AP VIEW SHOWING LONG SEGMENT STENOSIS IVC	82
FIGURE 19: MDCT VENOGRAPHY AP VIEW	85
FIGURE 20: MDCT VENOGRAPHY, AP AND LATERAL VIEWS	85
FIGURE 21: MDCT VENOGRAPHY AP VRT AND AXIAL IMAGES	85
FIGURE 22: PROPOSED DIAGNOSTIC STRATEGY FOR BCS	86

LIST OF FIGURES

Figure Page no.
FIGURES IN METHODS AND RESULTS
FIGURE 23: RECOMMENDED TREATMENT STRATEGY IN PATIENTS WITH
PRIMARY BCS111
FIGURE 24: DUPLEX DOPPLER DISPLAY120
FIGURE 25: A COMBINATION OF SCHEMATIC DRAWINGS AND US DOPPLER
WAVEFORMS SHOWING CLASSIFICATION OF HEPATIC VEIN DOPPLER
WAVEFORMS
FIGURE 26 : DETERMINING DIRECTION OF BLOOD FLOW WITH DOPPLER 124
FIGURE 27: AGE OF BCS PATIENTS IN CURRENT STUDY130
FIGURE 28: PATTERN (REGARDING THE ONSET OF THE DISEASE) OF BCS 131
FIGURE 29: MAIN PRESENTING COMPLAINT
FIGURE 30: CLINICAL RELEVANT DATA OF THE STUDIED PATIENTS134
FIGURE 31: ETIOLOGY OF BCS OF THE STUDIED PATIENTS136
FIGURE 32: CHILD-PUGH SCORE CLASSIFICATION OF PATIENTS138
FIGURE 33: ABDOMINAL U/S FINDINGS IN THE STUDIED PATIENTS
FIGURE 34: THE STATUS OF IVC IN THE STUDIED PATIENTS141
FIGURE 35: PATTERN OF IVC AND/OR HVS INVOLVEMENT IN THE STUDIED
PATIENTS144
FIGURE (36): HUGE INTRAHEPATIC COLLATERAL C D u/s and MRV 149
FIGURE (37): MRV SHOWS THROMBOSIS OF THE IVC AND INFERIOR RIGHT
HV AT ITS JUNCTION WITH IVC150
FIGURE (38): MSCT SHOWS MOTTLING OF THE HEPATIC PARENCHYMA 150
FIGURE (39): A-MSCT SHOWS REGENERATIVE NODULES151
FIGURE (40): MRV SHOWS COMPLETE OCCLSION OF THE IVC152
FIGURE (41): DOPPLER U/S SHOWS COMPLETE OCCLSION OF THE IVC 152
FIGURE (42): MRV-CORONAL IMAGE SHOWS COMPRESSION OF THE IVC 153
FIGURE (43): DOPPLER U/S SHOWS COMPRESSION OF THE IVC153

LIST OF ABBREVIATIONS

Abbrev.	Meaning
ACAs	Anticardiolipin Antibodies
ACL IgG	Anticardiolipin IgG
ACL IgM	Anticardiolipin IgM
ALB	Albumin
ALP	Alkaline phosphatase
ALT	Alanin amino-transferase
AMM	Agnogenic myeloid metaplasia
ANA	Anti nuclear antibody
APAs	Antiphospholipid antibodies
APC	Activated protein C
APCR	Activated protein C resistance
APS	Antiphospholipid syndrome
APTT	Activated partial thromboplastin time
AST	Aspartate amino-transferase
AT III	Antithrombin III
BCS	Budd-Chiari syndrome
BD	Behcet Disease
\mathbf{BM}	Bone marrow
BUN	Blood urea nitrogen
CD	Color Doppler
CDUS	Color Doppler ultrasound
CML	Chronic Myelogenous leukemia
CT	Computed Tomography
DB	Direct bilirubin
DSV	Digital subtraction venography
DVT	Deep venous thrombosis
ELTA	European liver transplant association
ESR	Erythrocyte sedimentation rate
FISH	Fluorescent in-situ hybridization
FV	Facor V
FVa	Acivated factor V
FVLM	Factor V Leiden mutation
Hb	Hemoglobin
НСС	Hepatocellular carcinoma
Hetero	Heterozygous
Homo	Homozygous
HVOO	Hepatic venous outflow obstruction
HVs	Hepatic veins
INR	International normalized ratio
IVC	Inferior vena cava

LIST OF ABBREVIATIONS

Abbrev.	Meaning
IVCO	inferior vena cava obstruction
IVCT	inferior vena cava thrombosis
JAK2	Janus tyrosine kinase-2
LA	Lupus Anticoagulant
LAP	Leukocyte alkaline phosphatase
LCF	Liver cell failure
LF	Liver cell failure
LHV	Left hepatic vein
LMWH	Low molecular weight heparin
\mathbf{MF}	Myelofibrosis
MHV	Middle hepatic vein
MOVC	Membranous obstruction of IVC
MPDs	Myeloproliferative disorders
MRI	Magnetic resonance imaging
MRV	Magnetic resonance venography
MSCT	Multislice CT
MTHFR	Methylenetetrahydro-folate reductase
OCPs	Oral Contraceptive Pills
PC	Protein C
PCR	Polymerase chain reaction
PGM	Prothrombin gene mutation
PLT	Platelets
PNH	Paroxysmal nocturnal hemoglobinuria
PS PT	Protein S Prothrombin time
PTFE PTT	Polytetrafluoroethylene Partial thromboplastin time
PV	Portal vein
PCV	Polycythemia vera
PVT	Portal vein thrombosis
RHV	Right hepatic vein
SAAG	Serum-ascites albumin gradient
SD	Standard deviation
SLE	Systemic lupus erythematosus
TB	Total bilirubin
TIPS	Transjugular Intrahepatic Portosystemic Shunt
VOD	Veno-occlusive disease
VTE	Venous throboembolism
WBCs	White blood cells
WHO	World Health Organization

INTRODUCTION

Budd-Chiari syndrome (BCS) is a structural and functional abnormality of the liver caused by obstruction of the hepatic venous outflow from its origin in the hepatic sinusoids till the final drainage in the right atrium (*Fu et al.*, 2009).

George Budd (1845), a British internist, described three cases of hepatic vein thrombosis due to abscessinduced phlebitis, and Hans Chiari (1899) an Austrian pathologist, added the first pathologic description in three additional cases of hepatic vein occlusion due to phlebitis. Inferior Vena Cava (IVC) involvement was present in one of the three cases (Musa et al., 2007).

BCS can be classified as primary when obstruction of the hepatic venous outflow tract is the result of an endoluminal venous lesion (thrombosis or web). It is considered secondary when the obstruction results from the presence in the lumen of material not originating from the venous system (malignant tumor or parasite invading the lumen) or from external venous compression (abscess, cyst or solid tumor) (*Okuda et al.*, 1998).

External venous compression can be complicated by thrombosis, particularly when prothrombotic factors are present by chance (inherited thrombophilia) or by association (inflammatory response secondary to an adjacent abscess) (Janssen et al., 2003).

The risk factor leading to the occurrence of thrombosis could be recognized in more than 90% of cases with proper investigations (*Valla et al.*, 2003). Obstruction of the hepatic venous outflow tract is classified according to its location: small hepatic veins, large hepatic veins, inferior vena cava (IVC) and combined obstruction of large hepatic veins and inferior vena cava (*Ludwig et al.*, 1990).

Classification of BCS according to site of obstruction (Ludwig et al., 1990).

Designation	Definition
Small hepatic veins	Veins that can not be shown clearly on hepatic
	venograms or by ultrasound studies; they
	include intercalated veins and interlobular
	veins.
Large hepatic veins	Veins that are regularly demonstrable on
	hepatic venograms and ultrasound studies;
	segmental branches of hepatic veins are
	generally included
Inferior vena cava	A segment of the IVC which extends from the
(IVC)	entry level of the right, middle and left hepatic
	veins to the junction between the IVC and the
	right atrium
Combined obstruction	Combination of obstruction in the large hepatic veins and IVC

The site of obstruction is in general easily determined through non-invasive imaging (Doppler-ultrasound, magnetic resonance (MRI), computed tomography (CT)) or conventional venography (*Janssen et al.*, 2003).

Recently, BCS has been classified according to the site of venous obstruction into 3 types and 6 subtypes (*Zhang and Li*, 2007):

Type I: "IVC lesions":

a: Membranous lesions.

b: Short segmental occlusion (<5cm).

c: Long segmental occlusion (>5cm).

Type II: "lesions of HVs":

a: Membranous lesions.

b: Diffuse occlusion.

Type III: Mixed type (type I & II).

BCS is commonly presented by classic triad of abdominal pain, tender hepatomegaly and ascites, but if IVC is involved, leg edema, fever, marked dilated veins over the trunk and ulcers in the peri-tibial areas difficult to heal may also be present (*Okuda*, 2002).

Unlike the West, where isolated hepatic vein thrombosis is responsible for a majority of cases with BCS, in Africa and Asia, isolated IVC obstruction is the commonest cause of BCS. In various series, isolated IVC accounted for 39–78% of patients with BCS; on the other hand associated IVC obstruction with hepatic vein occlusion accounted for 60% patients with BCS. Hepatic vein thrombosis is commonly due to an underlying hypercoagulable state and presents more often with an

acute illness. In contrast, BCS due to IVC obstruction, also known as obliterative hepatocavopathy or membranous obstruction of IVC is frequently idiopathic and is associated with a milder, more chronic disease (Vivek et al., 2009).

Although less common in western countries, primary membranous obstruction of the IVC is the most common cause of BCS in South Africa and Asia, and is thought to be a consequence of IVC thrombosis (Okuda, 2002). For unknown reasons, 44-49% of patients with known membranous occlusion ultimately develop hepatocellular carcinoma (HCC), even in the absence of cirrhosis (Simson, 1982). On the other hand, HCC has not been reported to be a complication of hepatic vein thrombosis, except in Behcet's disease-associated BCS (Bayraktar et al., 1998).

Membranous obstruction of the IVC (MOVC) was described at the first time by Nagayo 1909 in Japanese patients and the term was first used by Bennett 1950. It was reported to be the most common cause of BCS accounting for one-third of cases in Asian countries, including Taiwan, China, Japan and India, and also in South Africa (Wei et al., 2001).

Thrombosis of the IVC occurs in association with various systemic and local diseases such as vasculitis, infection, malignancy, etc, but idiopathic thrombosis at the

hepatic portion of the IVC is the most common, particularly in developing countries. A major question or focus of interest is why the hepatic and supra-hepatic portion of the IVC is predisposed to thrombosis. It has been suggested that the respiratory movement of the diaphragm and coughing cause microscopic damage to the endothelial lining of the IVC. Turbulence also caused by the hepatic vein flow perpendicular to the IVC may contribute to thrombus formation in this part of the IVC (Okuda, 2002).

An epidemiological survey conducted by a national study group in 1989 in Japan suggested the existence of about 300 patients with BCS, only 9 patient (5.7%) had hepatic vein thrombosis, and the remaining patients had IVC obstruction (Okuda, 2002).

A previous study at Mayo clinic showed that IVC obstruction was very rare in the United States compared to developing countries (Okuda, 2002).

In India, peri-caval filariasis was considered to be an factor for important inducing **IVC** thrombosis. Hypercoagulable conditions previously mentioned in BCS were observed in only a few cases of IVC thrombosis (Okuda, 2002).