BIOCHEMICAL AND MOLECULAR STUDIES ON SOME SYNTHETIC FOOD ADDITIVES

By

RADWA ADEL YOUNIS EL-BAZ

B. Sc. Agric. Sci. (Agriculture Biochemistry), Fac. Agric., Cairo Univ., 1998 M. Sc. Agric. Sci. (Agriculture Biochemistry), Fac. Agric., Cairo Univ., 2004

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agricultural Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2011

APPROVAL SHEET

BIOCHEMICAL AND MOLECULAR STUDIES ON SOME SYNTHETIC FOOD ADDITIVES

Ph.D. Thesis In Agric. Sci. (Agricultural Biochemistry)

By

RADWA ADEL YOUNIS EL-BAZ

B. Sc. Agric. Sci. (Agriculture Biochemistry), Fac. Agric., Cairo Univ., 1998 M. Sc. Agric. Sci. (Agriculture Biochemistry), Fac. Agric., Cairo Univ., 2004

Approval Committee

Dr. HASSAN AHMED EL-SAIED AMRAH Researcher Professor in Food Toxicology and Contaminents , NRC, Egypt
Dr. ABDEL KADER MOURSY ABDEL –SAMAD
Professor of Agriculture Biochemistry, Fac. Agric., Cairo University
Dr. EBTESAM ABDEL-MONEIM MAHMOUD
Professor of Agriculture Biochemistry, Fac. Agric., Cairo University
Dr. AHMED MAHMOUD MOUSTAFA ABOUL -ENEIN
Professor of Agriculture Biochemistry, Fac. Agric., Cairo University

Date: 24 / 3 / 2011

SUPERVISION SHEET

BIOCHEMICAL AND MOLECULAR STUDIES ON SOME SYNTHETIC FOOD ADDITIVES

Ph.D. Thesis
In
Agric. Sci. (Agricultural Biochemistry)

 $\mathbf{B}\mathbf{y}$

RADWA ADEL YOUNIS EL-BAZ

B. Sc. Agric. Sci. (Agriculture Biochemistry), Fac. Agric., Cairo Univ., 1998 M. Sc. Agric. Sci. (Agriculture Biochemistry), Fac. Agric., Cairo Univ., 2004

SUPERVISION COMMITTEE

Dr. AHMED MAHMOUD ABOUL-ENEIN

Professor of Agriculture Biochemistry, Fac. Agric., Cairo University

Dr. EBTESAM ABDEL - MONEIM MAHMOUD Professor of Agriculture Biochemistry, Fac. Agric., Cairo University Name of Candidate: Radwa Adel Younis El Baz Degree: Ph.D. Title of Thesis: Biochemical and Molecular Studies on Som e Synthetic

Food Additives

Supervisors: Dr. Ahmed Mahmoud Moustafa Aboul-Enein

Dr. Ebtesam Abdel-Moneim Mahmoud Hassanien

Department: Agricultural Biochemistry **Approval:** 24 / 3/2011

ABSTRACT

In the present study haematological, biochemical, histological, molecular and *in vitro* studies were carried out to evaluate the effect of synthetic and natural food additives in either their single or two fold treatment dose to prove their effect on the biological and physiological behavior in experimental rats. Na saccharin was used as synthetic sweetener in comparison to sorbitol. Tartrazine was examined as synthetic colorant in comparison with carmine as natural one. BHT which was tested as synthetic preservative and vanillin was examined as synthetic flavor in comparison with clove oil tested as natural preservative and flavor. Results showed a pronounced increase in RBCs count and Hb levels under the influence of synthetic food additives while, no significant changes occur when natural food additives we re exam ined. A significant decrease occurred on WBCs count when tars fed on synthetic additives in comparison with their natural ones.

Synthetic food additives leads to a severe increase in AST, ALT activities when compared to their controls while no observed increase were noticed by using natural ones. Synthetic food additives affect the enzymatic symphony in the body, causing a lot of disturbances and unbalance in the enzymatic reactions which act as an indicator for several diseases. Significant increase in creatinine, uric acid and bilirubin levels were detected. In addition, severe increase occurred on gamma-glutamyl transferase and alkaline phosphatase activities which recorded great increase on male rats when administered synthetic food additives in either its single or 2-fold dose administration in comparison with their natural ones.

Histological examinations was carried out for different organs. Liver, kidneys and spleen of tested male adult rats were taken after decapitation at the end of the experiment and fixed in 10% neutral buffered form alin for 24h. The tissues washed and prepared for subsequent examination.

Molecular analysis occurred at the end of experiment and two rats of each group were injected intraperitoneal by colchicine 2h prior to sacrifice by decapitation. The bone mearrow cells were collected from the fem or and the different types of chromosomal aberrations were studied. Additionally, the effect of food additives either natural or synthetic were tested *in vitro* on the viability of tumor cells (EACC) and the results were recorded. Results proved that natural food additives have antitumor activity against tumor cells.

Key words: Synthetic food additives, natural food additives, health hazard effect, blood count, histological examination, molecular analysis.

DEDICATION

I dedicate this work to whom my heart felt thanks; to my Father Consultant/Adel Younis El-Baz, my mother Professor/Nasiba Kohela, my lovely kids Zien, Karim and Radwa, for their patience, help and support they lovely offered along the whole period of my study.

ACKNOWLEDGEMENT

I am deeply thankful for merciful ALLAH who gave me everything I ask and by the grace of whom the work was realized.

I wish to express thanks and gratitude to **Dr. Ahmed Mahmoud Moustafa Aboul-Enein** Professor of Biochemistry,
Faculty of Agriculture, Cairo University for his supervision,
encouragement and constructive criticism during the thesis.

Sincere thanks to **Dr. Ebtesam Abdel-Moniem Mahmoud Hassanien** Professor of Biochemistry, Faculty of Agriculture,
Cairo University for her effort, helpful advice, care and support in all stages of the thesis.

I greatly thank all the members of Biochemistry Department Faculty of Agriculture, Cairo University for the facilities they offered me during my practical work.

CONTENTS

	P
INTRODUCTION	
REVIEW OF LITERATURE	
1. Synthetic sweetener	
2. Natural sweetener	
3. Synthetic Food colorant	
4. Natural Food colorant	
5. Synthetic preservative and antioxidant	
6. Synthetic Flavor	
7. Natural Flavor	
MATERIALS AND METHODS	
RESULTS AND DISCUSSION	
1. Haematological analysis	
a. The count of RBCs and WBCs	
b. Blood hemoglobin levels	
2. Biochemical analyses	
a. AminoTransferase enzymes	
b. Creatinine levels	
c. Gamma-glutamyl transferase activity	
d. Alkaline-phosphatase activity	
e. Uric acid level	
f. Bilirubin contents	1
3.Anti tumor activity	1
4.Histological analyses	1
5. Molecular studies (Chromosomal aberrations)	1
SUMMARY	1
REFERENCES	1
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1. 2.	The chemical composition of salt mixture The chemical composition of the vitamin mixture	55 55
3.	RBCs (10 ⁶ /mm ³) of rats at natural and synthetic food additives	73
4.	WBCs (10 ⁶ /mm ³) of rats at natural and synthetic food additives	75
5.	Hb contents (g/dl) at natural and synthetic food additives	79
6.	AST activity (IU/L) of rats at natural and synthetic food additives.	83
7.	ALT activity (IU/L) of rats at natural and synthetic food additives	85
8.	Creatinine contents (mg/dl) of rats at natural and synthetic food additives	89
9.	GGT activity (U/L) of rats at natural and synthetic food additives.	92
10.	ALP activity (IU/L) of rats at natural and synthetic food additives	96
11.	Uric acid contents (mg/dl) of rats at natural and synthetic food additives.	99
12.	Bilirubin content (mg/dl) of rat at natural and synthetic food additives	103
13.	The viability of EACC (2h incubation) on food additives	107
14.	The viability of EACC (4h incubation) on synthetic food additives	108
15.	The viability of EACC (4h incubation) on natural food additives	108

16.	The viability of EACC (6h incubation) on natural food additives	108
17.	Different chromosomal aberration in bone marrow cells	
	detected due to different doses of synthetic food additive in	
	rats	127

LIST OF FIGURES

No.	Title	Page
1.	RBCs of rats (10 ⁶ /mm ³) at single dose of natural and synthetic food additives.	74
2.	RBCs of rats (10 ⁶ /mm ³) at double dose of natural and synthetic food additives	74
3.	WBCs (10 ⁶ /mm ³) of rats at single dose of natural and synthetic food additives	76
4.	WBCs (10 ⁶ /mm ³) of rats at double dose of natural and synthetic food additives	76
5.	Hb contents (g/dl) of rats at single dose of natural and synthetic food additives	80
6.	Hb contents (g/dl) of rats at double dose of natural and synthetic food additives	80
7.	AST activity (IU/L) of rats at single dose of natural and synthetic food additives	84
8.	AST activity (IU/L) of rats at double dose of natural and synthetic food additives	84
9.	ALT activity (IU/L) of rats at single dose of natural and synthetic food additives	86
10.	ALT activity (IU/L) of rats at double dose of natural and synthetic food additives	86
11.	Creatinine contents (mg/dl) of rats at single dose of natural and synthetic food additives	90
12.	Creatinine contents (mg/dl) of rats at double dose of natural and synthetic food additives	90

13.	GGT activity (U/L) of rats at single dose of natural and synthetic food additives	93
14.	GGT activity (U/L) of rats at double dose of natural and synthetic food additives	93
15.	ALP activity (IU/L) of rats at single dose of natural and synthetic food additives	97
16.	ALP activity (IU/L) of rats at double dose of natural and synthetic food additives	97
17.	Uric acid contents (mg/dl) of rats at single dose of natural and synthetic food additives	100
18.	Uric acid contents (mg/dl) of rats at double dose of natural and synthetic food additives	100
19.	Bilirubin contents (mg/dl) of rats at single dose of natural and synthetic food additives	104
20.	Bilirubin contents (mg/dl) of rats at double dose of natural and synthetic food additives.	104
21.	The viability of EACC on synthetic food additives	109
22.	The viability of EACC on natural food additives	109
23.	Spleen of control male rats showed normal lymphoid follicles (H&E X100)	115
24.	Spleen of treated male rats with BHT(60 mg) showed mild lymphocytic necrosis and deplation (H&E X100)	115
25.	Spleen of adult male rats fed on sorbitol (80 mg) (H&E x100)	116

26.	Spleen of adult male rats fed on sodium saccharin (300mg) showed expansion of the white pulp with obliteration of normal architecture (H&E x100)
27.	Liver of control male adult rats showed the normal structure of hepatic lobule, central vien and hepatic cords (H&E x 100)
28.	Liver of adult male rats fed on sorbitol (80 mg) .Normal liver tissues (H&Ex100)
29.	Liver of adult male rats treated with vanillin(60 mg) Dilated congested central viens marked sinusordal dilution and congestion (H&E x 200).
30.	Liver of rats treated with clove oil(100 mg) showing normal hepatic vascular (H&E x 200)
31.	Liver of rats fed on sodium saccharin(300 mg) showing portal tract thickened by marked dilution and congestion of vascular channels and mild-manonuclear infiltrate(H&E x400)
32.	Kidney of control male rats showed the histological structure of the renal cortex from glomeruli and convulated tubules (H&Ex100)
33.	Kidney of adult male rats treated with BHT (60 mg) showed hypercellularity of the glomerular tuft (H&E x100)
34.	Kidney of adult male rats fed on tartrazine(40 mg).Increased in the number and size of glomeruli(H&E x100)
35.	Kidney of adult male rats fed on sodium saccharin(300 mg) showing interstitial fibrosis and congestion(H&E x100)
36.	Kidney of adult male rats fed on clove oil(100 mg). Normal structure for vascular congestion (H&E x200).
37.	Kidney of adult male rats treated with carmine(80 mg). Normal tubules(H&E x 100)

38.	Photomicrographs of bone marrow chromosomes of control adult male rats
39.	Photomicrographs of bone marrow cells of adult male rats fed on tartrazine(20 mg)
40.	Photomicrographs of chromosomes of bone marrow cells of adult male rats fed on carmine(80 mg)
41.	Photomicrographs of metaphase of bone marrow cells of rats fed on tartrazine(40 mg)
42.	Photomicrographs of bone marrow cells of rats fed on BHT(60 mg)
43.	Photomicrographs of bone marrow cells of rats fed on clove oil(100 mg)
44.	Photomicrographs of bone marrow cells of rats fed on saccharin(300 mg)
45.	Photomicrographs of abnormal cells of bone marrow cells of rats fed on vanillin(60 mg)
46.	Photomicrographs of chromosomal aberrations in bone marrow cells of rats induced by BHT(30 mg)
47.	Photomicrographs of chromosomal aberrations in bone marrow cells of male rats fed on Na saccharin(150 mg)

INTRODUCTION

Increasing attention has been paid for the role of food additives either natural or synthetic. In the second half of the twentieth century was the wide spread use of color food additives. More than 3000 artificial synthetic food additives including 1200 artificial food colorants were used in food

In recent years it has been recognized that some synthetic food additives have toxic properties and irreversible adverse effects on human health especially when used for a long time. They showed to exhibit genotoxic effect depending upon the level of human exposure to such agents and lead to a lot of hazard effects on human health and experimental animals (Dawidek-Pietryka and Dudkda, 2002).

Food additive is any substance not commonly regarded or used as food which is added to, or used in or on food at any stage to affect its keeping quality, texture, conistancy, taste, color, alkalinity or acidity, or to serve any other technological function in relation to food and include processing aids(Magnuson *et al.*, 2007).

Food additives have several uses as preservatives, sweeteners, flavors, enhancers, food colorants, color - retention agents, bulking agent, thickners, emulsifiers, anti - foaming agents, anti - caking agents and flavor treatment agent. They were used in soft drinks industry, dried fruits, juices, syrups, cherries, children sweets, salad cream, jams, crisps, biscuits, sauces, corned beef, other food and meat products (Birkner *et al.*, 2006).

The growth in use for these additives had increased enormously in the last 50 years. An emerged considerable scientific data linking food additives intolerance with various physical and mental disorders, especially artificial azo dyes used as food colorants. The extent of such use was related to the degree of industrialization. The consequence of industrialization and the development of food processing technology were detected and the great bulk of artificial food additive used in food had been suspected of being toxic and carcinogenic. Many of these additives had been banned whenever possible to choose food without synthetic additives (Hirschbruch and Torres, 1998).

Additionally, artificial food additives induced colon DNA damage in mice. It had become obvious that exposure to chemicals entails risk. Their hazardous and threatening may be not only direct but indirect affecting microorganisms, animal and plants (Tsuda *et al.*, 2001).

Continuous consumption of synthetic food additives was related to several diseases as heart disease, liver, kidney, brain damage, weakened immune system, infertility, hyperactivity in children, behavioral problems, learning, visual disorders and cancer (Ruxton, 2008).

Nowadays, people prefer using natural food additives, herbal additives and even biological farming without using any synthetic compounds. All these occur due to the excessive use of synthetic food additives which lead to human health hazard. Increasing restrictions had been focused on the utilization of natural products as source of fine chemicals for various uses. It was well established that a large number