

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHANICAL POWER DEPARTMENT

EFFECT OF SOME DESIGN PARAMETERS ON THE PERFORMANCE OF HIGHLY COOLED AIR CONDITIONING OUTLETS

A THESIS BY

Eng. Tamer Maher Gadelkareem B.Sc. Mechanical Engineering

Submitted in partial fulfillment of the requirement for the degree of

Masters In Mechanical Engineering

SUPERVISED BY

Prof. Dr. Raouf Nassif Abdelmessih AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHANICAL POWER DEPARTMENT Dr. Ehab Mouris Mina
AIN SHAMS UNIVERSITY
FACULTY OF ENGINEERING
MECHANICAL POWER DEPARTMENT

Statement

This dissertation is submitted in partial fulfillment for the degree of Masters of Science in Mechanical Power Engineering – Ain Shams University. The work included in this thesis is carried out by the author at the laboratories of the Mechanical Power Engineering Department – Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other University, or a place of learning.

Signature:

Tamer Maher Gadelkareem Nashed

PREFACE

This thesis is submitted in partial fulfillment for the degree of masters in Mechanical Power Engineering Department, Ain Shams University.

The work included in this thesis is carried out by the author at the laboratory of Mechanical Power Engineering Department, Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at any other university.

ACKNOWLEGMENT

First of all, I would like to thank GOD who gave me the strength and courage to do this work and made everything is possible for me. My deepest respect and gratitude are due to my Prof. Dr. Raouf Nassif Abdelmessih for his supervision, guidance, encouragement and help which were of great value to me. I also like to thank Dr. Ehab Mouris for his assistantship.

Thanks are also due to the technical staff of the Mechanical Power Engineering Department, Faculty of Engineering, Ain Shams University, for their help, especially Mr. Medhat El Dessouky, Mr. Fouad Saleh and Mr. Ahmed Fahmy.

ABSTRACT

Highly cooled air conditioning systems supply air to the conditioned space at temperatures ranging from 5°C to 11°C resulting in air volume flow rates lower than that required for the conventional air conditioning systems, which supply air to the conditioned space at temperatures ranging from 13°C to 18°C, by about 30%. The reduced supply air volume flow rates required with a lower supply air temperature result in smaller air ducts, smaller air handling units (AHUs), reduced fan energy consumption, potential for thermal storage and reduced pump energy consumption. In addition, improvements in indoor air quality have been noted.

One concern for these systems is that the supply cold air volume flow rate is lower than for the conventional systems that result in the occupant experiencing cold drafts and hence, thermal discomfort. To overcome this problem, some mechanical engineers have used fan-powered mixing boxes to increase the supply air temperature. Unfortunately, fan-powered mixing boxes introduce maintenance problems and can negate the energy and first cost saving of the highly cooled air conditioning systems.

The most straight forward, lowest first cost and energy efficient approach to overcome cold drafts problems is to supply the highly cooled air directly to the space using supply air diffusers designed for the required characteristics.

Successful supply of the highly cooled air directly to the space requires a diffuser that introduces the air along the ceiling at a high velocity. Therefore, high air velocity increases entrainment of the room air, length of attachment to the ceiling and results in higher air temperatures at the point where the air stream leaves the ceiling.

The current research focuses on the air distribution to overcome the cold draft problem. Different swirl diffuser configurations are designed and manufactured to meet the desired characteristics.

An experimental investigation is conducted to study the effect of the design parameters on the performance of the highly cooled air conditioning outlets. Also, comparison is made between the conventional diffuser and designed diffusers performances, based on the air temperatures distribution in different test locations in the conditioned space.

For this purpose, a test rig was designed, constructed and installed in the refrigeration laboratory. Many experiments were conducted by the different diffuser configurations, under the supply air temperature and test heat loads.

The experimental results obtained are plotted to show the performance of the conventional diffuser with the highly cooled air conditioning system. Also, the results show the effect of the design parameters on the performance of the swirl diffuser.

The expected results are to show that the conventional diffuser, with the highly cooled air conditioning system, produces cold drafts and cold spots in the occupied and unoccupied zones of the test space but the swirl diffuser of different configurations, do not produce cold drafts or cold spots in the occupied zone of the test space. Even though, few cold spots are noticed near the ceiling for some configurations.

Also, it is expected that the swirl diffuser configurations affects the range of the air temperatures inside the test space.

NOMENCLATURE

SYMBOLS

 $[^{\circ}C]$ T Air temperature Sensible heat load [W]q Air volume flow rate O [L/S] $[W/m^2. \circ C]$ Overall heat transfer coefficient IJ $[m^2]$ Α : Surface area S [-] switch

SUBSCRIPTS

Sup. : Supply room : Room out. : Outside in. : Internal ext. : External tot. : Total

ABBREVIATIONS

AHU : Air Handling Unit

HVAC : Heating, Ventilation and Air Conditioning

CFD : Computational Fluid Dynamics

ASHRAE : American Society of Heating, Refrigeration and

Air conditioning Engineers

TABLE OF CONTENTS

PREFACE		i
ACKNOWLE	DGEMENT	ii
SUMMARY		iii
NOMENCLA	TURE	vi
CHAPTER 1	INTRODUCTION	1
	1.1 Difference between conventional and highly cooled air systems	2
	1.2 The benefits of highly cooled air distribution systems	3
	1.3 The potential problems associated with the highly cooled air distribution systems	7
	1.4 Economical comparison between conventional and highly cooled air system	10
	1.5 Current research	11
CHAPTER 2	REVIEW OF PREVIOUS WORK	12
CHAPTER 3	EXPERIMENTAL APPARATUS AND	
	TESTPROCEDURE	29
	3.1. EXPERIMENTAL APPARATUS	30
	DESCRIPTION	
	3.1.1. THE CONDITIONED SPACE (TEST ROOM)	32
	3.1.2. THE REFRIGERATION	34
	SYSTEM	J 4
	a. The hermetic compressor	35
	b. Air cooled condenser	36
	 c. Liquid refrigerant receiver 	37
	d. Capillary tubes	37
	e. Submerged evaporators	38
	f. Piping and accessories	38

	5.1.5. THE CHILLED WATER	39
	SYSTEM Chilled vysten tonly	40
	a. Chilled water tank	40
	b. Supply line pump	40 42
	c. Circulation pump	42
	d. Piping and fittings 3.1.4. THE AIR CYCLE	42
	a. The air blower	43
	b. The air cooling coils	43
	c. Ducts and connections	44
	3.1.5. THE INTERNAL HEAT	
	LOAD	46
	3.2. SUPPLY AIR DIFFUSERS	47
	a) Conventional circular diffuser	47
	b) Swirl diffusers	48
	3.3. INSTRUMENTATIONS	49
	3.3.1. Air volume flow rate	49
	3.3.2. Chilled water flow rate	51
	3.3.3. Temperature measurements	52
	I. Supply and return air	52
	temperature	32
	II. Chilled water supply	53
	temperature	33
	III. Chilled water return	54
	temperature	54
	IV. Outside air temperature	54
	V. Room space air temperatures	55
	and scanning mechanism	
	VI. Room walls temperatures	59
	3.4. TEST PROCEDURE	61
CHAPTER 4	Results and discussion	66
	4.1. The performance of the different diffusers at 1040 W internal heat load and 10°C supply air temperature	66

	1. The conventional diffuser	71
	2. Four straight passages swirl diffuser	74
	3. Four curved passages swirl diffuser	83
	4. Six straight passages swirl diffuser	91
	5. Eight straight passages swirl diffuser	99
	4.2. The performance of the different diffusers at 480 W internal heat load and 10°C supply air temperature	108
	1. The conventional diffuser	109
	2. Four straight passages swirl diffuser	117
	3. Four curved passages swirl diffuser	125
	4. Six straight passages swirl diffuser	133
	5. Eight straight passages swirl diffuser	142
CHAPTER 5	CONCLUSION	152
REFERENC	CES	156
APPENDIX		157

LIST OF FIGURES

			Page
Figure	(2.1)	Comfort graph generated by Houghten et al. (1938)	15
Figure	(2.2)	Relationship between the local air velocity and temperature drop required for feeling of equal warmth	17
Figure	(2.3)	Modified comfort graph of Houghten	18
Figure	(2.4)	Range of discharge temperature difference and CFM/ft ² for experiments conducted for ADPI tests	20
Figure	(2.5)	Room mean velocity vs total momentum for all diffusers	21
Figure	(2.6)	ADPI vs momentum number for circular diffusers	22
Figure	(2.7)	Series fan-powered mixing box	23
Figure	(2.8)	Parallel fan-powered mixing box	23
Figure	(2.9)	Non-powered induction units	24
Figure	(2.10)	Measurement of air flow and temperature distribution	25
Figure	(2.11)	Specifications of test outlets	26
Figure	(3.1)	Schematic diagram of the experimental test rig	31
Figure	(3.2)	Conditioned space (Test room)	33
Figure	(3.3)	Refrigeration system components	34
Figure	(3.4)	The hermetic compressor	35
Figure	(3.5)	Air cooled condenser	36
Figure	(3.6)	Liquid refrigerant receiver	37

			Page
Figure	(3.7)	Schematic diagram of the chilled water system	41
Figure	(3.8)	Schematic diagram of the air system	45
Figure	(3.9)	The internal heat load distribution	46
Figure	(3.10)	The circular conventional diffuser	48
Figure	(3.11)	different designs of the swirl diffuser	49
Figure	(3.12)	The Pitot tube	50
Figure	(3.13)	The four piezometers for measuring air static pressure	50
Figure	(3.14)	The orifice flow meter	52
Figure	(3.15)	Location of supply air temperature sensor	53
Figure	(3.16)	Temperature thermometer module	54
Figure	(3.17)	Chilled water temperature measurement in the return pipe	54
Figure	(3.18)	Room space air temperatures scanning mechanism	56
Figure	(3.19)	Test levels and angles	58
Figure	(3.20)	The LED indication board	59
Figure	(3.21)	The levels of the room wall at which the temperature modules are fixed	60
Figure	(4.1)	Air temperatures distribution of the vertical section at an angle 0 degree, when using conventional diffuser, at 1040 W	66

			Page
Figure	(4.2)	Air temperatures distribution of the vertical section at an angle 22.5 degree, when using conventional diffuser, at 1040 W	67
Figure	(4.3)	Air temperatures distribution of the vertical section at an angle 45 degree, when using conventional diffuser, at 1040 W	67
Figure	(4.4)	Air temperatures distribution of the vertical section at an angle 67.5 degree, when using conventional diffuser, at 1040 W	67
Figure	(4.5)	Air temperatures distribution of the vertical section at an angle 90 degree, when using conventional diffuser, at 1040 W	68
Figure	(4.6)	Air temperatures distribution of the vertical section at an angle 112.5 degree, when using conventional diffuser, at 1040 W	68
Figure	(4.7)	Air temperatures distribution of the vertical section at an angle 135 degree, when using conventional diffuser, at 1040 W	68
Figure	(4.8)	Air temperatures distribution of the vertical section at an angle 157.5 degree, when using conventional diffuser, at 1040 W	69

			Page
Figure	(4.9)	Air temperatures distribution of the horizontal section at level 249 cm from the floor, when using conventional diffuser, at 1040 W	70
Figure	(4.10)	Air temperatures distribution of the horizontal section at level 226 cm from the floor, when using conventional diffuser, at 1040 W	70
Figure	(4.11)	Air temperatures distribution of the horizontal section at level 203 cm from the floor, when using conventional diffuser, at 1040 W	70
Figure	(4.12)	Air temperatures distribution of the horizontal section at level 180 cm from the floor, when using conventional diffuser, at 1040 W	71
Figure	(4.13)	Air temperatures distribution of the horizontal section at level 157 cm from the floor, when using conventional diffuser, at 1040 W	71
Figure	(4.14)	Air temperatures distribution of the horizontal section at level 134 cm from the floor, when using conventional diffuser, at 1040 W	71
Figure	(4.15)	Air temperatures distribution of the horizontal section at level 111 cm from the floor, when using conventional diffuser, at 1040 W	72
Figure	(4.16)	Air temperatures distribution of the horizontal section at level 88 cm from the floor, when using conventional diffuser, at 1040 W	72