

DAMPING OF SUBSYNCHRONOUS OSCILLATIONS IN POWER SYSTEMS

A thesis submitted for the M.Sc. degree in Electrical Engineering

Submitted by: **Eng. Ahmed Hassan Yakout**

Supervised by: **Prof. Dr. Metwally Awad El-Sharkawy**Faculty of Engineering

Ain Shams University

Prof. Dr. El-Sayed Abd-El-Aliem Mohamed
Faculty of Engineering
Ain Shams University

Dr. Mohamed Abd-El-Aziz Abd-El-RahmanFaculty of Engineering
Ain Shams University

Cairo 2005

ACKNOWLEDGMENT

The author would like to express his sincere thanks to Prof. Dr. Metwally Awad El-Sharkawy, Prof. Dr. El-Sayed Abd-El-Aliem Mohamed and Dr. Mohamed Abd-El-Aziz Abd-El-Rahman for their guidance, continuous encouragement and generous help throughout the development of this work.

The helpful discussions with Dr. Gamal El-Nashar at the Dept. of Electrical Engineering, M. T. C. during the course of this thesis are gratefully acknowledged.

Acknowledgments are extended to Prof. Dr. Mohamed Abd-El-Latif Badr, Chairman of Electrical Power and Machines Department.

The author would also like to express his love, gratitude, and appreciation to his parents and beautiful sisters for there endless love, encouragement and patience during the course of this work and behind.

ABSTRACT

This thesis presents a comparative study of different controller options for Subsynchronous Resonance (SSR) mitigation. The objective is to investigate different methodologies to mitigate the torsional oscillations due to subsynchronous resonance in a capacitor-compensated power system using modern control techniques. Controller design options presented in this thesis are: (i) Pole placement, (ii) Linear quadratic regulator (LQR)-based artificial neural network (ANN), and (iii) H_{∞} control.

A proposed pole placement technique that provides a complete state feedback excitation regulator, that damps the unstable torsional modes of oscillations, is introduced. This controller design is effective in stabilizing the system at a certain compensation level. However, if the compensation level is changed, a new adjustment of the regulator gains is required.

Linear quadratic control methodology results in a complete state feedback linear optimal controller. This method minimizes a quadratic functional of the plant states and control inputs. The designed controller provides an optimal damping solution for all torsional modes simultaneously. Albeit, such regulator is to some extent robust, the regulator gains must be adjusted to new values as the compensation level changes widely. To accommodate for a wider range of variation in the compensation level, the objective function has been modified to contain not only the states and control signal, but also special state combination that provides information about load and compensation variation. Moreover, an effective

LQR-based ANN is developed in order to adaptively cope with the system compensation level and loading conditions.

 H_{∞} technique provides a robust output feed back regulator that results in a sub-optimal damping solution for all torsional modes. This technique minimizes the ∞ -norm of the closed loop system from the disturbance input to the required output. Such controller uses a minimum number of system outputs to provide the proper damping. Computer simulation results show that all oscillating modes can be stabilized simultaneously for a wide range of capacitor compensation.

All the aforementioned techniques have been applied to the first IEEE Subsynchronous Resonance (SSR) benchmark model. Time-domain simulations show that LQR-based ANN and H_{∞} regulator provide complete robustness over the suggested operating conditions (20% - 90% compensation, and 50% - 100% loading) with reasonable control signals.

TABLE OF CONTENTS

ACKNOWLEDGMENT ABSTRACT LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATIONS LIST OF SYMBOLS Chapter 1:INTRODUCTION 1.1 Introduction: 1.2 Definition of Subsynchronous Resonance (SSR): 1.3 SSR Effects: 1.3.1 Self-Excitation: 1.4.2 Shaft Torque Amplification: 1.4.3 Frequency Scanning: 1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model: 2.3.4 The FBM Network Model: 2.3.4 The FBM Network Model:		_
LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATIONS LIST OF SYMBOLS Chapter 1:INTRODUCTION 1.1 Introduction: 1.2 Definition of Subsynchronous Resonance (SSR): 1.3 SSR Effects: 1.3.1 Self-Excitation: 1.4 Analytical Tools: 1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:		
LIST OF TABLES LIST OF ABBREVIATIONS LIST OF SYMBOLS Chapter 1:INTRODUCTION 1.1 Introduction: 1.2 Definition of Subsynchronous Resonance (SSR): 1.3 SSR Effects: 1.3.1 Self-Excitation: 1.3.2 Shaft Torque Amplification: 1.4 Analytical Tools: 1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:		
LIST OF ABBREVIATIONS LIST OF SYMBOLS Chapter 1:INTRODUCTION 1.1 Introduction: 1.2 Definition of Subsynchronous Resonance (SSR): 1.3 SSR Effects: 1.3.1 Self-Excitation: 1.4 Analytical Tools: 1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:		
Chapter 1:INTRODUCTION	LIST OF TABLES	X
Chapter 1:INTRODUCTION		
1.1 Introduction: 1.2 Definition of Subsynchronous Resonance (SSR): 1.3 SSR Effects: 1.3.1 Self-Excitation: 1.3.2 Shaft Torque Amplification: 1.4 Analytical Tools: 1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:	LIST OF SYMBOLS	xii
1.2 Definition of Subsynchronous Resonance (SSR): 1.3 SSR Effects: 1.3.1 Self-Excitation: 1.3.2 Shaft Torque Amplification: 1.4 Analytical Tools: 1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:	Chapter 1:INTRODUCTION	1
1.3 SSR Effects: 1.3.1 Self-Excitation: 1.3.2 Shaft Torque Amplification: 1.4 Analytical Tools: 1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:	1.1 Introduction:	1
1.3 SSR Effects: 1.3.1 Self-Excitation: 1.3.2 Shaft Torque Amplification: 1.4 Analytical Tools: 1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:		
1.3.2 Shaft Torque Amplification: 1.4 Analytical Tools: 1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:		
1.3.2 Shaft Torque Amplification: 1.4 Analytical Tools: 1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:	1.3.1 Self-Excitation:	4
1.4 Analytical Tools: 1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:		
1.4.1 Frequency Scanning: 1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2: CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:		
1.4.2 Eigenvalue Analysis: 1.4.3 EMTP Analysis: 1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:		
1.5 Countermeasures to SSR Problems: 1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS		
1.5.1 Filtering and Damping: 1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:	1.4.3 EMTP Analysis:	7
1.5.2 Relaying and Detecting Devices: 1.5.3 System Switching and Generator Tripping: 2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:	1.5 Countermeasures to SSR Problems:	7
1.5.3 System Switching and Generator Tripping:	1.5.1 Filtering and Damping:	7
2.5.4 Generator and System Modification: 1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS 2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:		
1.6 Motivation: 1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS	1.5.3 System Switching and Generator Tripping:	12
1.7 Thesis Objective: 1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS	2.5.4 Generator and System Modification:	13
1.8 Thesis Organization: Chapter 2:CASE STUDY MODELINGAND ANALYSIS		
Chapter 2:CASE STUDY MODELINGAND ANALYSIS		
2.1 Introduction: 2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:	1.8 Thesis Organization:	15
2.2 Case Study: 2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:	Chapter 2:CASE STUDY MODELINGAND ANALYSIS	16
2.3 Case Study Modeling: 2.3.1 The FBM Generator Model: 2.3.2 The Excitation System: 2.3.3 The FBM Network Model:	2.1 Introduction:	16
2.3.1 The FBM Generator Model:	2.2 Case Study:	16
2.3.2 The Excitation System:	2.3 Case Study Modeling:	17
2.3.3 The FBM Network Model:	2.3.1 The FBM Generator Model:	17
2.3.4 The FBM Shaft Model:	2.3.3 The FBM Network Model:	21
	2.3.4 The FBM Shaft Model:	22

Table of Contents

2.3.6 Initial Currents, Voltages and Torque Angle: 2.4 Case Study Eigenvalue Analysis: 2.4.1 The State Space Representation: 2.4.2 The FBM Mechanical Shaft Analysis: 2.4.3 The FBM Complete System Analysis: 2.5 Conclusions: Chapter 3: POLE PLACEMENTTECHNIQUE 3.1 Introduction: 3.2 The Pole Placement Regulator (PPR) Problem: 3.3 The Proposed Pole Placement Solution: 3.4 Design Approach: (See Appendix B.1) 3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=45%: 3.5.4 Overall Controller: 3.6 Conclusions:	28 29 34 37 50
2.4.1 The State Space Representation: 2.4.2 The FBM Mechanical Shaft Analysis: 2.4.3 The FBM Complete System Analysis: 2.5 Conclusions: Chapter 3: POLE PLACEMENTTECHNIQUE 3.1 Introduction: 3.2 The Pole Placement Regulator (PPR) Problem: 3.3 The Proposed Pole Placement Solution: 3.4 Design Approach: (See Appendix B.1) 3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=45%: 3.5.4 Overall Controller: 3.6 Conclusions:	29 34 37 50
2.4.2 The FBM Mechanical Shaft Analysis: 2.4.3 The FBM Complete System Analysis: 2.5 Conclusions: Chapter 3: POLE PLACEMENTTECHNIQUE 3.1 Introduction: 3.2 The Pole Placement Regulator (PPR) Problem: 3.3 The Proposed Pole Placement Solution: 3.4 Design Approach: (See Appendix B.1) 3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=45%: 3.5.4 Overall Controller: 3.6 Conclusions:	34 37 50
2.4.3The FBM Complete System Analysis: 2.5Conclusions: Chapter 3:POLE PLACEMENTTECHNIQUE 3.1 Introduction: 3.2 The Pole Placement Regulator (PPR) Problem: 3.3 The Proposed Pole Placement Solution: 3.4 Design Approach: (See Appendix B.1) 3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=45%: 3.5.4 Overall Controller: 3.6 Conclusions:	37 50
2.5Conclusions: Chapter 3:POLE PLACEMENTTECHNIQUE 3.1 Introduction: 3.2 The Pole Placement Regulator (PPR) Problem: 3.3 The Proposed Pole Placement Solution: 3.4 Design Approach: (See Appendix B.1) 3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=45%: 3.5.4 Overall Controller: 3.6 Conclusions:	50
Chapter 3: POLE PLACEMENTTECHNIQUE 3.1 Introduction: 3.2 The Pole Placement Regulator (PPR) Problem: 3.3 The Proposed Pole Placement Solution: 3.4 Design Approach: (See Appendix B.1) 3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=45%: 3.5.4 Overall Controller: 3.6 Conclusions:	
3.1 Introduction: 3.2 The Pole Placement Regulator (PPR) Problem: 3.3 The Proposed Pole Placement Solution: 3.4 Design Approach: (See Appendix B.1) 3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=45%: 3.5.4 Overall Controller: 3.6 Conclusions:	. 51
3.2 The Pole Placement Regulator (PPR) Problem: 3.3 The Proposed Pole Placement Solution: 3.4 Design Approach: (See Appendix B.1) 3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=45%: 3.5.4 Overall Controller: 3.6 Conclusions:	,, 51
3.3 The Proposed Pole Placement Solution: 3.4 Design Approach: (See Appendix B.1) 3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=79%: 3.5.4 Overall Controller: 3.6 Conclusions:	51
3.3 The Proposed Pole Placement Solution: 3.4 Design Approach: (See Appendix B.1) 3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=79%: 3.5.4 Overall Controller: 3.6 Conclusions:	53
3.4 Design Approach: (See Appendix B.1) 3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=79%: 3.5.4 Overall Controller: 3.6 Conclusions:	
3.5 Pole Placement Results: 3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=79%: 3.5.4 Overall Controller: 3.6 Conclusions:	
3.5.1 PPR Design at SCF= 27%: 3.5.2 PPR Design at SCF=45%: 3.5.3 PPR Design at SCF=79%: 3.5.4 Overall Controller: 3.6 Conclusions:	
3.5.3 PPR Design at SCF=79%:	
3.5.4 Overall Controller:	66
3.5.4 Overall Controller:	71
Chapter 4:LINEAR QUADRATIC CONTROL	78
	79
4.1 Introduction:	79
4.2 The linear Quadratic Regulator Problem:	79
4.3 LQR Solution:	81
4.4 Design Approach:	83
4.5 Case Study Results:	83
4.5.1 LQR Design at SCF=27%:	84
4.5.2 LQR Design at SCF=45%:	
4.5.3 LQR Design at SCF=79%:	100
4.5.4 Overall Controller:	109
4.6 Conclusions:	110
Chapter 5:LQR AUGMENTATION	111
5.1 Introduction:	111
5.2 LQR Modification:	111

Table of Contents

5.3 LQR-based ANN:	127
5.4 Conclusions:	
Chapter 6:H∞ OUTPUT FEEDBACK CONTROL	133
6.1 Introduction:	133
6.2 H _∞ Output Feedback Control Problem:	133
6.3 H _∞ Output Feedback Control Solution:	
6.4 Design Approach:	
6.5 Case Study Results:	
6.5.1 H _∞ Controller Designed at SCF= 27%:	140
6.5.2 H. Controller Designed at SCF= 45%:	143
6.5.3 H Controller Designed at SCF=79%:	146
6.5.4 Multi-Stage H _∞ Controller:	149
6.6 Conclusions:	161
Chapter 7: CONCLUSIONS AND RECOMMENDATIONS	S 162
7.1 Conclusions:	162
7.2 Recommendations:	163
REFERENCES	164
Appendix A:CASE STUDY DATA	170
Appendix B:FLOW CHARTS	172

LIST OF FIGURES

Figure 1. 1 A radial compensated transmission system.	3
Figure 1. 2 The Navajo SSR blocking filter [8, 9]	
Figure 1. 3 A passive shunt countermeasure [10]	
Figure 1. 4 One phase of a dynamic filter using a cycloconverter [12].	
Figure 1. 5 Schematic of a dynamic stabilizer arrangement [6]	
Figure 1. 6 Circuit for the NGH scheme [18, 19].	
Figure 2. 1 The IEEE First Benchmark Model [20]	17
Figure 2. 2 Park's Synchronous machine [21]	
Figure 2. 3 A two-time-constant excitation system [21]	
Figure 2. 4 A capacitor compensated transmission line [20, 21]	
Figure 2. 5 A linear six mass spring turbine-generator system [20]	
Figure 2. 6 The i^{th} mass spring system [21]	23
Figure 2. 7 Transfer functions of steam turbines [21]	
Figure 2. 8 A two time constant governor [21]	. 26
Figure 2. 9 Phase angles [21]	
Figure 2. 10 Relative rotational displacements of the six rotor masses	
different modes of oscillation.	
Figure 2. 11 The effect of compensation on rotor subsynchronous	
frequency	40
Figure 2. 12 The effect of compensation on stator subsynchronous	
frequency	40
Figure 2. 13 The effect of compensation and loading on Mode (0)	
Figure 2. 14 The effect of compensation and loading on Mode (1)	42
Figure 2. 15 The change of generator speed at SCF=79%	43
Figure 2. 16 The effect of compensation and loading on Mode (2)	43
Figure 2. 17 The effect of compensation and loading on Mode (3)	44
Figure 2. 18 The change of generator speed at SCF=45%	44
Figure 2. 19 The effect of compensation and loading on Mode (4)	. 45
Figure 2. 20 The system response at SCF=27%	49
Figure 2. 21 The effect of compensation and loading on Mode (5)	49
Figure 3. 1 The system response with PPR at SCF=27%	66
Figure 3. 2 The system response with PPR at SCF=45%	71
Figure 3. 3 The system response with PPR at SCF=79%	75

Figure 3. 4 The effect of compensation on the FBM modes with
adjustable PPR designed at 100% loading77
Figure 4. 1 The effect of compensation and loading on the FBM modes with LQR (DSCF=27%)
Figure 4. 2 The effect of compensation and loading on the FBM unstable
modes change with LQR (DSCF=27 %)
Figure 4. 3 The system response with LQR at SCF=27%.
Figure 4. 4 The effect of compensation and loading on the FBM with
LQR (DSCF=45%)96
Figure 4. 5 The effect of compensation and loading on the FBM unstable modes with LQR (DSCF=45%)97
Figure 4. 6 The system response with LQR at SCF=45%99
Figure 4. 7 The effect of compensation and loading on the FBM modes
with LQR (DSCF=79%)103
Figure 4. 8 The effect of compensation and loading on the FBM unstable
modes with LQR (DSCF= 79 % and 100% loading)104
Figure 4. 9 The effect of compensation and loading on the FBM unstable
modes with LQR (DSCF= 79 % and 50% loading)104
Figure 4. 10 The effect of compensation and loading on the FBM unstable
modes with LQR (DSCF= 90 % and 50% loading)105
Figure 4. 11 The system response with LQR at SCF=79%
Figure 5. 1 The effect of compensation and disturbance weightings on the
FBM modes with modified LQR (50 % loading)
Figure 5. 2The effect of compensation and loading on the FBM modes
with modified LQR117
Figure 5. 3The system response with modified LQR at SCF=27% 121
Figure 5. 4The system response with modified LQR at SCF=45% 124
Figure 5. 5The system response with modified LQR at SCF=79% 126
Figure 5. 6The proposed ANN architecture. 127
Figure 5. 7The control signals of the LQR and ANN at SCF=27% (a)
from 0 to 5 seconds (b) from 0 to 1 seconds (c) from 2 to 3
seconds. 129
Figure 5. 8The control signals of the LQR and ANN at SCF=45% (a)
from 0 to 5 seconds (b) from 0 to 1 seconds (c) from 2 to 3
seconds

Figure 5. 9The control signals of the LQR and ANN at SCF=79% (a) from 0 to 5 seconds (b) from 0 to 1 seconds (c) from 2 to 3 seconds
Figure 5. 10The control signals of the LQR and ANN at SCF=90% (a) from 0 to 5 seconds (b) from 0 to 1 seconds (c) from 2 to 3 seconds.
Figure 6. 1 The original plant presentation with controller
Figure 6. 2 The Plant subjected to load and compensation level variation 138
Figure 6. 3 The Plant subjected to a disturbance vector equivalent to the load and compensation level variation
Figure 6. 4 The effect of compensation and loading on the FBM modes with H _∞ Regulator (DSCF=27 %)
Figure 6. 5 The effect of compensation and loading on the FBM unstable modes with H _∞ Regulator (DSCF=designed at 27%) 143
Figure 6. 6 The effect of compensation and loading on the FBM modes with H _∞ Regulator (DSCF= 45 %)145
Figure 6. 7 The effect of compensation and loading on the FBM unstable modes with H_{∞} Regulator (DSCF= 45 %)
Figure 6. 8 The effect of compensation and loading on the FBM modes with H _∞ Regulator (DSCF=79%)148
Figure 6. 9 The effect of compensation and loading on the FBM unstable modes with H _∞ Regulator (DSCF=79%)149
Figure 6. 10 The effect of compensation and loading on the FBM modes with multi-stage H _∞ Regulator
Figure 6. 11 The system response with multi-stage H_{∞} Regulator at SCF=27%
Figure 6. 12 The system response with multi-stage H_{∞} Regulator at SCF=45%.
Figure 6. 13 The system response with multi-stage H_{∞} Regulator at SCF=79%.

LIST OF TABLES

Table 2. 1 Calculated shaft eigenvalues or modes.	34
Table 2. 2 Calculated shaft eigenvectors or mode shapes	35
Table 2. 3 Arranged and identified eigenvalues at SCF=0%	.38
Table 2. 4 Computed eigenvalues at different SCF	39
Table 2. 5 Computed eigenvalues at SCF= 27%, 45% and 79%	46
Table 3. 1 Calculated eigenvalues at SCF=27% with and without PPR (DSCF= 27%)	60
Table 3. 2 Calculated eigenvalues of the controlled FBM with PPR (DSCF= 27% and 75% loading) at SCF=27%	.61
Table 3. 3 Calculated eigenvalues of the controlled FBM with PPR (DSCF= 27% compensation and 75% loading) at different SCF	62
Table 3. 4 Calculated eigenvalues of the FBM at SCF=45% with and without the PPR (DSCF= 45%).	67
Table 3. 5 Calculated eigenvalues of the FBM at SCF=79% with and without the PPR (DSCF= 79%).	71
Table 4. 1 Calculated eigenvalues of the FBM with LQR different state weightings at SCF= 27%	85
Table 4. 2 Calculated eigenvalues of the FBM with LQR at SCF=27% and different Loading conditions	.86
Table 4. 3 Calculated eigenvalues of the FBM with LQR different state weightings at SCF= 45%	93
Table 4. 4 Calculated eigenvalues of the FBM with LQR at SCF=79%	00
Table 5. 1 Calculated eigenvalues of the FBM with the modified LQR1	18
Table 5.2 The training parameters for the proposed ANN	28
Table 6.1 Calculated real parts of the shaft eigenvalues of the controlled FBM with the multi-stage H_{∞} regulator.	

LIST OF ABBREVIATIONS

 $\begin{array}{lll} ANN & Artificial \, Neural \, Network. \\ DSCF & Design \, Series \, Compensation \, Factor. \\ FBM & IEEE \, First \, Benchmark \, Model. \\ H_{\infty} & H \, refers \, to \, the \, hardy \, space \, of \, all \, stable \, systems \, \\ & and \, \infty \, refers \, to \, the \, system \, norm. \\ LQR & Linear \, Quadratic \, Regulator. \\ PPR & Pole \, Placement \, Regulator. \\ SCF & Series \, Compensation \, Factor \, (X_C/X_L \, \%). \end{array}$

LIST OF SYMBOLS

A	state matrix
a	speed relay
В	input matrix
C	capacitance in p.u
D	damping constant
EX	exciter
F	torque fraction
f	frequency
GEN	generator
g	governor opening
HP	High Pressure turbine
IP	Intermediate Pressure turbine
I, i	current in p.u
J	objective function
K	spring constant in p.u or gain matrix
L	inductance in p.u
LPA	Low Pressure turbine A
LPB	Low Pressure turbine B
m	measured outputs
P	power in p.u. or Riccatti equation solution
Q	reactive power in p.u or state weighting matrix or
	Riccatti equation solution
q	state weighting elements
<i>R</i> , <i>r</i>	resistance in p.u or input weighting matrix
T	torque in p.u or time constant in sec
u	inputs
w	disturbance
<i>X</i> , <i>x</i>	reactance in p.u or system states
У	system or reference output
Z	modal states
lpha , eta	phase angles in rad
γ	performance bound or phase angle in rad
Δ	parameter change or variation
δ, θ	rotor angle displacement in rad
λ	eigenvalue

List of Symbols

σ	damping or decrement factor (eigenvalue real part)
ψ	flux linkage in p.u
ω	speed in p.u

Superscript:

' transpose or transient value

" sub-transient value T matrix transpose

Subscript:

A	low pressure turbine A or regulator
a	phase a winding or armature winding
ad	mutual d axis
aq	mutual q axis
B	low pressure turbine B
b	phase b winding or base value
C	capacitive
CH	steam chamber
CO	crossover connection
c	phase c winding
D	damper winding in d axis
d	armature winding in d axis
E	transmission or external or exciter
e	electrical
F, f	field winding
FD	internal generator voltage
G	first damper winding in the q axis, or generator
H	high pressure turbine
I	intermediate pressure turbine
m	modal value

List of Symbols

initial value or infinite bus 0 second damper winding in the q axis Q armature winding in q axis qregulator R RHreheater reference value Ref or ref SMservomotor SR speed relay transformer Tgenerator terminal t Xexciter