EARLY DIAGNOSTIC BIOMARKERS FOR ACUTE KIDNEY INJURY IN CRITICALLY ILL PATIENTS

Essay

Submitted for Partial Fulfillment of Master Degree in Intensive Care Medicine

Presented By Ahmed Mostafa Hassan M.B., B.CH.

Supervised By

Prof. Dr. Mohammed Abd El Khalek Mohammed

Professor of Anesthesiology & Intensive Care Medicine Faculty of Medicine, Ain Shams University

Dr. Noha Mohammed El Sharnoby

Assistant Professor of Anesthesiology L Intensive Care Medicine Faculty of Medicine, Ain Shams University

Dr. Amal Hamed Rabie

Lecturer of Anesthesiology & Intensive Care Medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University

الدلائل الكيميائية المستخدمة في التشخيص المبكر للإصابة الحادة للكلية في مرضى الرعاية المركزة رسالة

مقدمة للحصول على درجة الماجستير في تخصص الرعاية المركزة

مقدمه من الطبيب/ احمد مصطفى حسن

تحت إشراف أستاذ دكتور/ محمد عبد الخالق محمد أستاذ التخدير والرعاية المركزة بطب عين شمس

دكتور/ نهى محمد الشرنوبى أستاذ مساعد تخدير والرعاية المركزة بطب عين شمس

دكتور/أمل حامد ربيع مدرس تخدير والرعاية المركزة بطب عين شمس

> كلية الطب جامعة عين شمس ٢٠١٢

Summary

The The incidence of acute kidney injury (AKI), previously referred to as acute renal failure, has reached epidemic proportions world-wide, affecting about $\frac{\sqrt{2}}{2}$ of hospitalised patients. In the critical care setting, the prevalence of AKI requiring dialysis is about $\frac{\sqrt{2}}{2}$, with a mortality rate exceeding $\frac{\sqrt{2}}{2}$ (*Parikh and Devarajan*, $\frac{\sqrt{2}}{2}$).

The early diagnosis of AKI currently depends on detection of reduced kidney function by the rise in serum creatinine concentration and blood urea nitrogen(BUN), which are delayed and unreliable measures in the acute setting. In general, there are several non-renal factors influencing the serum creatinine concentration such as body weight, muscle mass, race, age, gender, total body volume, drugs, muscle metabolism and protein intake(*Parikh and Devarajan*; **.***/).

<u>Acknowledgment</u>

First and foremost I feel always deeply indebted to **ALLAH**, the Most Gracious and the most merciful whose help me and always seek, while I try humbly to lead on his path, and without his willing I will achieve nothing.

I would like to express my deepest appreciation and gratitude to *Professor*, *Dr. Mohammed Ald El Khalek Mohammed*, Professor of Anaesthesiology and intensive care Medicine for his great support, close supervision and continuous encouragement through the whole work; it is a great honor to work under his supervision.

I stand in great debt to **Dr. Noba Mohammed El Sharnoly**, Assistant Professor of Anaesthesiology and intensive care Medicine for her continuous care, guidance, supervision, and meticulous care throughout the whole study

Finally, I express my best feeling and thankful to **Dr. Amal Hamed Rabie**, Lecturer of anaesthesiology and intensive care Medicine for her kind advice and her great efforts throughout this work.

Lastly and not least, I send my deepest love and gratitude to my family and friends for their love, care and ever-lasting support.

Contents

1	Acknowledgement	_
۲	List of abbreviations	_
٣	List of tables	_
ŧ	List of figures	_
٥	Introduction	1
٦	Aim of the work	ŧ
٧	Physiology of the kidney	0_ £ \(\tau \)
٨	Etiology of acute kidney injury	£ £ _ 7 £
٩	Biomarkers of Acute Kidney Injury	70_97
١.	English summary	9 7
11	References	٩٨-١٠٩
١٢	Arabic summary	_

List of Abbreviations

Arterial blood pressure
Angiotensin-converting enzyme
angiotensin converting enzyme inhibitors
Adrenocortico trophic Hormone
Actin depolymerizing factor
Anti diuretic hormons
Acute interstitial nephritis
Acute Kidney Injury
Adenosin monophosphate
Atrial natriuretic peptid
angiotensin II receptor blockers
Acute respiratory distress syndrome
Acute renal failure
Angiotensin
Acute tubular necrosis
Adenosine triphosphate
Area under the curve
blood urea nitrogen
Contrast induced nephropathy
Cardiopulmonary bypass
The Distal Convoluted Tubule
Extracellular Fluid
Ethylenediamine tetracetic acid
Erythro poietin
fractional excretion of sodium

FSGS	Focal segmental glomerulosclerosis
GFR	Glomerular Filtration Rate
Gro- α	Growth related oncogene-α
HCC	Hydroxy cholecalciferol
HRG	Histidine rich glycoprotein
HSCS	Hematopoietic stem cells
I cells	Intercalated cells
ICAM	Intercellular adhesion molecule \
IL-۱۸	Interleukin-\^
IRI	Induced renal injury
JG cells	Juxtaglomerular cells
JGA	The Juxtaglomerular Apparatus
KC	keratinocyte-derived chemokine
KC	Chemokin
\mathbf{K}_{f}	the capillary filtration coefficient
KIM-	Kidney Injury Molecule-
L-	Livre fatty acid binding protein
FABP	
LH	The Loop of Henle
MAC	Minimum alveolar concentration
MAP	Monocyte activating polypeptide
MIP	Macrophage inflammatory protein
NAG	<i>N-acetyl-</i> β-D-glucosaminidase
NAG	N-acetyl-β-(D)-glucosaminidase
NGAL	Neutrophil gelatinase—associated lipocalin
NHE	Na+/ H+ Exchanger Isoform ^r
NO	Nitric oxide
NSAIDs	nonsteroidal anti-inflammatory drugs

P cells	Principle cells	
PAH	para-aminohippuric acid	
P_B	the hydrostatic pressure in Bowman's capsule	
PCI	Percutaneous intervention	
PCT	The Proximal Convoluted Tubule	
P_G	hydrostatic pressure inside the glomerular capillaries glomerular hydrostatic pressure	
PG	Prostaglandins	
RBCS	Red blood cells	
RBP	retinol binding protein	
ROC	Receiver operating characteristic	
ROS	Reactive oxygen species	
ROS	Reactive oxygen species	
RRT	Renal replacement therapy	
SIRS	systemic inflammatory response syndrome	
Sr.Cr.	Serum Creatinine	
TNFα	Tumor necrosis factor α	
VCAM	Vascular cell adhesion molecule	
π_B	the colloid osmotic pressure of the proteins in Bowman's capsule	
π_G	the colloid osmotic pressure of the glomerular capillary plasma proteins	

list of figures

Figure		Page
Fig. (\)	Basic tubular segments of the nephron	0
Fig. (⁷)	Mechanism of sodium chloride transport in the early distal tubule	١٣
Fig. (r)	Structure of the juxtaglomerular apparatus	7
Fig. (٤)	Section of the human kidney showing the major vessels that supply the blood flow to the kidney and schematic of the microcirculation of each nephron	**
Fig. (°)	Schematic of relations between blood vessels and tubular structures and differences between cortical and juxtamedullary nephrons	7 17
Fig. (٦)	Summary of forces causing filtration by the glomerular capillaries	٣.

list of Tables

Table		Page
1	Functional Divisions of the Nephron	٠,
۲	Factors that affect renin secretion	٣٦

Introduction

incidence of acute kidney injury (AKI), previously referred to as acute renal failure, has reached epidemic proportions world-wide, affecting about $\frac{\sqrt{2}}{2}$ of hospitalised patients. In the critical care setting, the prevalence of AKI requiring dialysis is about $\frac{\sqrt{2}}{2}$, with a mortality rate exceeding $\frac{\sqrt{2}}{2}$. The treatment is largely supportive, at an annual cost surpassing $\frac{\sqrt{2}}{2}$ billion in the US alone.

Aim of the Work

The aim of this essay is to discuss the normal renal physiology, causes of acute kidney injury and the recent biomarkers for detection of acute kidney injury in critically ill patients.

Physiology of the Kidney

The kidney is paired, reddish brown, solid organ, it is an ovoid in outline but the medial margin is deeply indented and concave at its middle. A wide, vertical cleft (the hilum) transmits the structures entering and leaving the kidney, and leads to space within the kidney, the *sinus of the kidney* (*Romanes*, 1997).

Each kidney consists of two distinct zones(Jennette et al., 1991):

a) An outer cortex:

This appears red because it is richly supplied with blood and granular because it contains renal glomeruli.

b) An inner medulla:

Functional divisions of the nephron

The functional unit of the kidney is called the *nephron*. Each kidney is composed of about '," million nephrons in each kidney, and each nephron is capable of forming urine by itself. The nephrons with glomeruli in the outer portions of the renal cortex have short loop of Henle (cortical nephron), whereas those with glomeruli in the juxtamedullary region of the cortex have long loops extending down into the medullary pyramids which represent about 'o'.' of the nephrons (**figure** ') (**Romanes**, ' ', ', ')..

(1) The Proximal Convoluted Tubule (PCT):

Proximal convoluted tubule is about 'o mm long and oo µm in diameter. Its wall is made up of a single layer of cells that interdigitate with one another and is united by apical tight junctions. Between the bases of the cells, there are extensions of the extracellular space called the *lateral intercellular spaces*. The luminal edges of the cells have a striate *brush border* due to the presence of innumerable ',' µm microvilli. The proximal tubule terminates in the thin segment of the descending limb of the loop of Henle (*Tisher and Brenner*, ' ? ? ?).