بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار

في درجة حرارة من ١٥-٥٠ منوية ورطوبة نسبية من ٢٠-٥٠ هي درجة حرارة من ٢٥-١٥ منوية ورطوبة نسبية من ٢٠-١٠ % To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الاصليـة تالفـة

بالرسالة صفحات لم ترد بالاصل

A FRAMEWORK FOR DEVELOPMENT OF PERFORMANCE-RELATED SPECIFICATIONS FOR FLEXIBLE PAVEMENTS

By
SAMEH AHMED GALAL ABDELBAKI
B.Sc., M.Sc. in Civil Engineering

A Thesis Submitted to The Faculty of Engineering, at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Civil Engineering

Under the Supervision of

Prof. Dr. M. R. El-Mitiny

Professor of Highway and Traffic Engineering, Faculty of Engineering Cairo University

m. R. Simitize

Prof. Dr. Galal M. Said

Professor and Dean Faculty of Engineering Cairo University, Fayoum

Prof. Dr. Essam A. Sharaf

Professor of Highway and Traffic Engineering, Faculty of Engineering Cairo University

Y-T. Abold.

Faculty of Engineering, Cairo University
Giza, Egypt
1999

7400

A FRAMEWORK FOR DEVELOPMENT OF PERFORMANCE-RELATED SPECIFICATIONS FOR FLEXIBLE PAVEMENTS

SAMEH AHMED GALAL ABDELBAKI B.Sc., M.Sc. in Civil Engineering

A Thesis Submitted to The Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Civil Engineering

Approved by the Examining Committee	
1. Prof. Dr. Ahmed Atef Gadallah: M. Jacoballah	
2. Prof. Dr. Ali Zein Elabdin Heikal: Heikal	
3. Prof. Dr. Mohammed Rashad El-Mitiny : M. R. E. Santy	(Supervisor)
4. Prof. Dr. Galal Mostafa Said :	(Supervisor)
5. Prof. Dr. Esam Abdel-Aziz Sharaf :	(Supervisor)
Faculty of Engineering, Cairo University	

Giza, Egypt

Acknowledgments

The author wishes to express his gratitude to his advisor, Professor Dr. Essam Sharaf, Professor of Highway, Airport, and Traffic Engineering, Cairo University, for his guidance, encouragement and his useful suggestions throughout the course of this research.

Special thanks are expressed to Professor Dr. Mohamed Rashad Elmitiny, Professor of Highway, and Traffic Engineering, Cairo University, for his help and support in conducting this research.

The author would like to express his appreciation to Professor Dr. Galal Said, Professor and Dean of Engineering, Cairo University, Fayoum Branch, for supervising this research and for his encouragement and guidance.

A knowledgment is also extended to Engineers of the General Authority for Roads and Bridges (GARBLT) for their cooperation during the course of this work.

Abstract

The research presented in this thesis has developed a performance-related specifications (PRS) for flexible pavement. The main objectives of this research are to : (1) develop a framework for performance-related specifications (PRS) that could be applied to materials and construction process of flexible pavement, and (2) demonstrate the validity of this framework. The main result from this research is the definition of a framework that can be used to develop performance-related specifications for highway materials and construction. Although, the framework is general in nature and can be applied to any types of materials and construction, the applications in this study are limited to flexible pavement.

This thesis describes the procedure which is used in the development of the prototype PRS. Previous studies on statistically-based specifications are reviewed, and this review is used as the basis for the prototype PRS. The theory governing the payment schedules produced under the specifications is presented including several applications on the use and sensitivity of the specifications.

The performance-related specifications considers the expected life-cycle cost of the as-constructed pavement as the overall measure of quality. This approach uses the measurement of *in situ* materials properties and take the variability of materials and construction variables into account in the development of payment schedules.

A computer program has been developed for use with the specification and in generating payment schedules. The program relates the materials and construction (M&C) variables to the annual costs. The payment schedule can be determined based on a comparison between the predicted performance of the as-designed and the asconstructed pavements. The program consists of a set of subroutines, each one deals with calculating the various elements of performance-related specifications. The primary output of the program is a pay factor and it includes two applications: (1) it compares the as-designed pavement with the as-constructed pavement to determine a single pay factor, and (2) it takes into account the variability of the M&C variables to obtain the distribution of the pay factor.

Table of Contents

		Pag
Aknoledgment		iv
Abstract		
Table of Contents		
List of Tables		
List of Figures		
Chapter 1: Introdu	action	1
1.1 General		1
1.2 Problem	n statement	2
1.3 Objectiv	ves and scope	3
1.4 Overvie	w of the framework	3
1.5 Researc	h organization	5
Chapter 2 : Literatu	ıre Review	6
2.1 Introduc	ction	6
2.2 Paveme	nt performance	7
2.3 Paveme	nt materials	11
2.3.1 1	Bituminous material	12
	2.3.1.1 Models for asphalt mixture properties	13
	2.3.1.2 Resilient modulus	15
2.3.2 (Unbound granular materials	19
	Subgrade soil	
	Poisson's ratio	
	ory of elasticity	-
	Layered elastic system	
	2.4.1.1 Two layered systems	

Pag	;e
2.4.1.2 Vertical stress and vertical strain29)
2.4.1.3 Critical tensile strain	
2.5 Pavement performance model	
2.5.1 Failure criteria	
2.5.1.1 Predicting fatigue cracking	
2.5.1.2 Predicting rutting	
2.5.1.3 Predicting PSI / Roughness41	
2.5.1.4 Discussion of pavement performance models43	
2.5.2 Serviceability	
2.5.2.1 Present serviceability index (PSI)	
2.6 Traffic loading and volume	
2.6.1 Equivalent single wheel load	
2.7 Environmental consideration	
Chapter 3: Examination of PRS Specifications and Recent Studies)
3.1 Introduction49)
3.2 General Concept of PR49)
3.3 Sampling Plan and Testing)
3.4 Factors Considered in the PRS	2
3.5 Performance Indicators That Drive the PRS	3
3.6 Estimating Life-Cycle Cost	1
3.7 The As-Designed and The As-Constructed Pavements	5
3.8 Acceptance Plan	5
3.9 Determining Payment Schedules61	i
3.10 Pay Factor63	3
3.11 Operating Characteristic Curves	5
3.12 End Remarks	5

	Page
Chapter 4: Research Methodology	77
4.1 Research approach	
4.1.1 General assumptions and basis of the framework	
4.2 Data collection	83
4.2.1 Representative pavement sections	83
4.2.2 Pavement layer data	85
4.2.2.1 Asphalt concrete mix properties (as built)	85
4.2.2.2 Granular base soils	
4.2.2.3 Subgrade soil	90
4.2.2.4 Layers thickness data	90
4.2.2.5 Poisson's Ratio	94
4.3 Selection of materials and construction (M&C) variables	94
4.4 Determination of values for fundamental mixture response	
variables	95
4.5 Pavement structural analysis	97
4.5.1 Calculation of values of fundamental pavement response	3
variables (FPRV)	97
4.5.1.1 Regression analysis	99
4.6 Pavement performance indicators	110
4.6.1Performance prediction models	110
4.6.1.1 Predicting fatigue cracking	111
4.6.1.2 Predicting permanent deformation	111
4.6.1.3 Predicting roughness	112
4.7 Development of an acceptance plan for PRS of flexible	
pavement	112
4.7.1 Determination of pavement cost	113
4.7.2 Pavement economics	113
4.7.3 The target as-designed pavement	115

F	Page
4.7.4 The as-constructed pavement	115
4.7.5 Concepts related to payment schedule	
4.7.6 Pay factor	
4.8 Demonstration of the framework and payment schedule	
4.9 Application example	
Chapter 5 : Computer Program	125
5.1 General	125
5.2 Program description	125
5.2.1 Input subroutine	126
5.2.1.1 Layer input screen for single pay factor application	131
5.2.1.2 Layer input screen for pay factor distribution	132
5.2.2 FMRV calculation subroutine	133
5.2.3 FPRV calculation subroutine	133
5.2.4 Traffic subroutine	133
5.2.5 Performance subroutine	134
5.2.6 Distress development subroutine	134
5.2.7 Cost analysis subroutine	135
5.2.8 Payment subroutine	135
5.3 Program output	135
5.3.1 First application: Simple comparison	136
5.3.2 Second application: pay factor distribution	138
5.3.2.1 Random numbering generation procedure	140
5.3.2.2 Pay factor distribution output	145
Chapter 6: Development of Performance-Related Specifications	147
6.1 General	147
6.2 Development and philosophy of the framework	147

	Page
6.3 Overview of specifications	148
6.4 Elements required in a performance-related specifications	148
6.5 Definitions	148
6.6 Factors considered in the framework	149
6.7 Generalized framework for PRS	150
6.7.1 Materials and construction variables levels	151
6.7.2 Environmental and traffic data levels	151
6.7.3 Determination of values of fundamental mixture response	;
variables	152
6.7.4 Calculation of fundamental pavement response variables	153
6.7.5 Pavement performance prediction	153
6.7.6 Estimating life-cycle cost	154
6.7.7 Acceptance plan	155
6.7.8 Basis of payment	155
6.8 Example of specification application (case study)	156
6.8.1 Constant input data	156
6.8.2 First application: Single pay factor	156
6.8.2.1 As-designed pavement	156
6.8.2.2 As-constructed pavement	162
6.8.2.3 Pay factor	164
6.8.3 Second application: Pay factor distribution	164
6.8.3.1 Input variables	164
6.8.3.2 Output pay factor	168
Chapter 7: Effect of Material and Construction Variables on the Paveme	ent
Performance	
7.1 Introduction	
7.2 Material property - material response sensitivity analysis	

		Page
7:	7-3 Material response - pavement response - pavement performance	
	sensitivity analysis	184
7.	.4 Pay factor sensitivity analysis	191
7.	7.5 Use of stochastic variables in sensitivity analysis	199
Chapter 8	8: Summary, Conclusions, and Recommendations	201
8	1 Summary	201
8	2 Conclusions	202
8	3 Recommendations	204
Reference	es	206
Appendic	:es	219
Α	Appendix A: GARBLT Data	
Α	Appendix B: Regression Analysis Data	
Α	Appendix C: Random Number Generation Data by Excel	