

Assessment of citrus peel extract on lipid metabolism and acyl coenzyme A oxidase enzyme mRNA level in rats under high fat diet induced obesity.

A Thesis Submitted By:

Zeínab Mohamed Badr Saleh Ahmed El-Husseíny (B.Sc. in Biochemistry, 2006)

In Partial Fulfillment of the Degree of Master of Science
In Biochemistry

Under Supervision of

Prof. Dr. Azza Ahmed Atef

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr.Nagwa Ibrahim Yahia Hassanin

Professor of Nutrition Biochemistry and Nutrition Department-Girl's College Ain Shams University

Dr. Magda Kamal El-Din Ezz

Assistant Professor of Biochemistry
Biochemistry Department
Faculty of Science
Ain Shams University

مَّانِ وَاللهُ الْعَظْمِينِ،

Faculty of Science Biochemistry Department

Biography

Name Zeinab Mohamed Badr Saleh

Ahmed El-Husseiny

Date of Graduation May 2006, Faculty of

Science, Biochemistry

Department

Ain Shams University

Degree awarded B.Sc. in Biochemistry

Declaration

This thesis has not been submitted for a degree at this or any other university

Zeinab Mohamed Badr Saleh Ahmed El-Husseiny

Dedication

I would like to dedicate this thesis to whom I am greatly indebted.

.....To my father's spírít

.....To my mother

(The merciful, supportive and beloved persons in my life).

Acknowledgements

First and foremost many thanks are due to Almighty GOD, the most Merciful, to Whom I owe support and success in my whole life.

It is really difficult for me to find the suitable words that could express my deep gratitude and sincere appreciation towards Prof. Dr. Azza Ahmed Atef, Professor of Biochemistry Department, Faculty of Science, Ain Shams University, for her perpetual guidance, valuable suggestions and valuable advice for supervision this work.

I would like to express my thanks to Prof. Dr. Nagwa Ibrahim Yahia Hassanin, Professor and Head of Biochemistry and Nutrition department-Gril's College, Faculty of Science, Ain Shams University, for suggesting the point and for her perpetual guidance and creative thinking.

My sincere gratitude is also extended to Dr. Magda Kamal El-Din Ezz, Assistant Professor of Biochemistry, Faculty of Science, Ain Shams University, for her kind help, patience, creative thinking, constant guidance, sincere encouragement, valuable advice and correcting of the manuscript, and strong Co-operation.

LIST OF CONTENTS

	Page
Abstract	Ι
List of Figures	III
List of Tables	VI
List of Abbreviations	VII
Introduction	1
Aim of the Work	7
Chapter I: Review of Literature	
1. Obesity	9
1.1: Hormonal Pathophysiology	12
• Leptin: Discovery, Biosynthesis, Function,	14
Adiposity signal, Satiety and Mechanism	
of action	
Obesity and Leptin resistance	22
Adiponectin: Discovery, Structure,	24
Function, Metabolic effect, Receptor and	
Mechanism of action	
1.2: Enzymes regulating lipid metabolism	30
• Allosteric control of fatty acid β-oxidation	34
Acyl COA oxidase	37
Acyl-COA dehydrogenase	38
Comparison between acyl-COA oxidase and	43

List of Contents

medium acyl-COA dehydrogenase	
• Glucose-6-phosphate dehydrogenase (G6PD).	45
2. Flavonoids	47
• Lemon peel	51
• 2-1 : Intake, Absorption, Conjugation, and	52
Toxicity of flavonoids	
• 2-2: Clinical Effects	55
2-2-1: Antioxidative effects	55
2-2-2: Direct radical scavenging	57
2-2-3: Anti-atherosclerotic effects	58
2-2-4: Anti-inflammatory effects	58
2-2-5: Anti-tumor effect	60
2-2-6: Anti-thrombogenic effects	62
2-2-7: Anti-osteoporotic effects	63
2-2-8: Anti-viral effect	64
• Future Implications	65
Chapter II: Materials & Methods	
I- Materials	67
• 1.1: Preparation of lemon extracts	67
• 1.2: Preparation of diet and experimental diets	67
• 1.3: Experimental animals	69
1.3.1: Study Design.	69
1.3.2: Sample preparation	71
1.3.2.1: Collection of blood samples	71
1.3.2.2: Preparation of tissue	71
1.3.2.3: Histological examination	72

List of Contents

II- Methods	73
• 2.1: Nutritional assessment	73
• 2.2: Identification of polyphenolic compounds	73
using RP-HPLC	
• 2.3: Biochemical Analysis of Blood	74
2.3.1: Determination of Serum Total Cholesterol	74
2.3.2: Determination of Serum Triacylglycerol	77
2.3.3: Determination of Serum HDL-C	79
2.3.4: Determination of Serum LDL-C	81
and VLDL-C	
2.3.5: Determination of Serum Phospholipids	82
2.3.6: Determination of Serum Glucose	84
2.3.7: Determination of Serum Insulin	86
2.3.8: Determination of Serum Leptin	91
2.3.9: Determination of Serum Adiponectin	96
2.3.10: Determination of Serum Total	101
antioxidant capacity	
2.3.11: Determination of erythrocytes Glucose-6-	103
-phosphate dehydrogenase activity	
2.3.12: Determination of Serum medium chain	105
acyl-COA dehydrogenase activity	
2.3.13: Determination of Serum acyl-COA	110
oxidase activity	
2.3.14: Molecular Characterization of acyl-	116
-COA oxidase	
2.3.15: Histological examination	126

Statistical Analysis	127
Chapter III: Results	
• 1- Identification and Quantification of Phenolic	129
lemon peel Compounds by HPLC	
• 2- Biology study	132
2.1: Body weight gain	132
2.2: Food intake	132
2.3: Feed efficiency ratios	133
• 3- Biochemical analyses	136
3.1: Effect of lemon peel extract on serum	
lipid profile	136
3.2: Effect of lemon peel extract on serum glucose,	serum
insulin and homeostasis model assessment	insulin
resistance (HOMA-IR) in all studied groups	139
3.3: Effect of lemon peel extract on serun	n total
antioxidant capacity, serum leptin and adiponecting	n in all
studied groups	142
3.4: Effect of lemon peel extract on erythrocytes G	lucose-
6-Phosphate dehydrogenase (G6PD), serum perox	xisomal
acyl CoA oxidase (ACO) and serum mitoch	ondrial
medium chain acyl CoA dehydrogenase (N	MCAD)
enzymatic activities	146
3.5: Molecular biology results of acyl-COA	
oxidase	150
3.6: Histological examination of liver	154

List of Contents

Chapter IV:Discussion	157
Summary	173
Conculsion and Recommendations	179
References	181
ARABIC SUMMARY	

LIST OF FIGURES

Figure	Title	Page
Fig.(I):	A comparison of a mouse unable to produce leptin thus resulting in obesity (left) and a normal mouse (right).	12
Fig.(II):	Show interaction of insulin and leptin with the hypothalamic-pituitary-adrenal axis.	17
Fig.(III):	Mechanism of action of leptin.	20
Fig.(IV):	Mechanism of action of Adiponectin.	29
Fig.(V):	Schematic overview of the endogenous regulators of gene expression.	33
Fig.(VI):	Key regulation sites of fatty acid β-oxidation	35
Fig.(VII):	Acyl-CoA oxidase, the first enzyme in peroxisome β -oxidation, which transfers the hydrogen to oxygen producing H_2O_2 instead of producing FADH2	36
Fig.(VIII):	Superposition of: <i>A</i> , VLCAD dimer on an MCAD dimer; <i>B</i> , VLCAD monomer on an MCAD tetramer with a close-up of the overlay of the C-terminal domain with the other monomers; <i>C</i> , VLCAD monomer on an ACO monomer.	39
Fig.(IX):	Enzymes involved in the a,b-dehydrogenation of acyl-thioesters. The fatty acid chains occurring in boxidation (left) are usually even numbered straight chains of variable length. In the structures of those derived from amino acid metabolism (right) "•" indicates saturated C-centers and * (-C=O)-S-CoA. Whether LCAD is better located into the b-oxidation subfamily. Recent evidence indicates that it plays an important role in the b-oxidation of medium-chain and long-chain 2-methylacyl-CoAs and of unsaturated fatty acid thioesters (Note the central role of ETF and ETF-dehydrogenase (ETF-DH) in delivering electrons to the respiratory chain.	41
Fig.(X):	Putative ETF docking site in MCAD and the corresponding site in ACO. (A) A view of MCAD indicating the hypothetical ETF docking site. α-Helical domain (red), b-sheet domain (cyan), the first C-terminal a-domain (green) and the FAD (yellow balls). The electrons are transferred from the MCAD FAD to the ETF flavin through Trp166 and	44

List of Figures

	M +165	
	Met165. (B) The corresponding view of the ACO structure. Helix S (grayish blue) of the other subunit of the ACO dimer blocks the access of the ETF flavin to the FAD of the ACO molecule	
Fig.(XI):	The Pentose Phosphate a Pathway and Glutathione production.	45
Fig.(XII):	Generic structures of the major flavonoids.	48
Fig.(XIII):	Structure of flavonoids in lemon fruits.	54
Fig.(XIV):	Hypothesis of the links between the working mechanisms of flavonoids and their effects on disease.	55
Fig.(XV):	Flavonoids stabilize the reactive oxygen species.	57
Fig.(1):	HPLC Chromatogram analysis of lemon peel extract at 280 nm. The presened numbers on the chart indicats the lemon peel componants as follows: 1: pyrogallic; 2:caffeic acid; 3: euganol; 4: ρ-coumaric acid; 5: ρ-hydroxy benzoic acid; 6: resorcinol; 7: salicylic acid; 8: luteoline; 9:quercetin; 10: chrysin; 11: luteolin-3-methoxy-7-rutinoside.	131
Fig.(2):	Percentage changes of weight gain, food intake and feed efficiency ratio in different studied groups compared to normal control group.	135
Fig.(3):	Percentage changes in serum lipid profile in different studied groups compared to normal control group.	138
Fig.(4):	Percentage changes in serum glucose, serum insulin and homeostasis model assessment insulin resistance in different studied groups compared to normal control group.	141
Fig.(5):	Percentage changes in serum total antioxidant capacity, serum leptin and adiponectin in different studied groups compared to normal control group.	145
Fig.(6):	Percentage changes of erythrocytes Glucose-6-	149

List of Figures

	phosphate dehydrogenase (G6PD), serum peroxisomal acyl-coenzyme A oxidase (ACO) and serum mitochondria medium chain acyl-coenzyme A dehydrogenase (MCAD) enzymatic activities in different studied groups compared to normal control group.	
Fig.(7):	Amplification plots for ACO gene expression.	150
Fig.(8):	Dissociation curves analysis for ACO gene expression	151
Fig.(9):	Fold change of ACO gene expression in the different groups relative to the normal control group. A- P _{NC} , the difference in ACO gene expression compaed to the normal control group. B- P _{HFD} , the difference in ACO gene expression compaed to the positive control group.	153
Fig.(10):	Photomicrograph of normal control livers showed a normal histological structure of hepatic lobule (H&EX200)	155
Fig.(11):	Photomicrograph of negative control livers showed a normal histological structure of hepatic lobule (H&EX200)	155
Fig.(12):	Photomicrograph of high fat Hepatocyte cells showed diffuse glycogen infiltration (H&EX200)	156
Fig.(13):	Photomicrograph of protective hepatocyte cells showed mild swelling and granularity of cytoplasm (H&EX200).	156
Fig.(14):	Photomicrograph of curative hepatic lobule shows focal areas of glycogen infiltration with narrowing of hepatic sinusoid (H&EX200).	156

LIST OF ABBREVIATIONS

Abb.	Full Name
ACO	Acyl coenzyme A oxidase
AgRP	Agouti-related peptide
AI	Arthogenic index
AIN	American Institute of Nutrition
ATP	Adenosine triphosphate
BMI	Body Mass Index
cAMP	Cyclic Adenosine monophosphate
°C	Celsius
CCK	Cholecystokinin
cDNA	Complementary deoxyribonucleic acid
CNS	Central nervous system
CVD	Cardiovascular Disease
DENV-2	Dengue Virus type-2
DHA	Docosahexaenoic acid
DNA	Deoxyribonucleic acid
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme Linked Immunosorbent Assay
EPA	Eicosapentaenoic acid
ETF	Electron transferring flavoprotein
FAD	Flavin Adenine Dinucleotide