EFFECT OF USING BACTERIAL INOCULATES ON MAIZE SILAGE QUALITY

BY AHMED MOHAMED MOSTAFA ABIDO

B. Sc. Agric. Sc. (Animal Production), Ain Shams University, 1993

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Animal Nutrition)

Department of Animal Production
Faculty of Agriculture -Ain Sham University

Approval sheet

EFFECT OF USING BACTERIAL INOCULATES ON MAIZE SILAGE QUALITY

BY

AHMED MOHAMED MOSTAFA ABIDO

B. Sc. Agric. Sc. (Animal Production), Ain Shams University, 1993

This thesis for M.Sc. degree has been approved by:
Prof. Dr. Yehia Ibrahiem El-Talty
Prof. of Animal Nutrition, Fac. of Agric., Cairo University.
Prof. Dr. Salwa Mahmoud Hamdy
Prof. of Animal Nutrition, Fac.of Agric. Ain Shams University.
Prof. Dr. Hamdy Mohamed Ahmed EL-Sayed
Prof. of Animal Nutrition, Fac. of Agric., Ain Shams University.
Prof. Dr. Hussein Saad Soliman
Prof. of Animal Nutrition, Fac. of Agric., Ain Shams University.

Date of Examination / / 2005

EFFECT OF USING BACTERIAL INOCULATES ON MAIZE SILAGE QUALITY

BY AHMED MOHAMED MOSTAFA ABIDO

B. Sc. Agric. Sc. (Animal Production), Ain Shams University, 1993

Under the supervision of:

Prof. Dr. Hussein Saad Soliman

Prof. Emeritus of Animal Nutrition, Animal Production Department, Fac. of Agriculture, Ain Shams University

Prof. Dr. Akila Saleh Hamza

Head of Research, Central Laboratory for Food and Feed, Agriculture Research Center

Prof. Dr. Hamdy Mohamed Ahmed El-Sayed

Prof . of Animal Nutrition , Animal Production
Department, Fac. of Agriculture, Ain Shams University

.

AKNOWLEDGEMENTS

All thanks to THE **MIGHTY GOD** (**ALLAH**) for the continuous and persistent supply with patience and effort to produce this study.

I wish to express my heartfelt thanks to **Prof. Dr. Husein Saad Soliman** professor of Animal Nutrition, Faculty of Agriculture, Ain Shams University for his supervision and scientific advices.

I would like to express my greatest gratitude to **Prof. Dr. Akila Saleh Hamza** professor at the Central Laboratory for Food and Feed,

Agriculture Research Center, Ministry of Agriculture for her supervision and continuous help in all stages of this study.

I am greatly indebt and most grateful to **Prof. Dr. Hamdy M. El-Sayed** professor of Animal Nutrition, Animal Production department, Faculty of Agriculture, Ain Shams University for his supervision and help in all stages of this work, in the field, encouragement and revision of the manuscript.

I would like to express my thanks to **Dr. Sawsan Fawzy Shehata**, associate professor of Microbiology Faculty of Agriculture,
Ain Shams University for her help during this study.

Finally, many thanks for every one helped me in this study.

ABSTRACT

Ahmed Mohamed Mostafa Abido. Effect of using bacterial inoculates on maize silage quality. Unpublished Master of Science Thesis. Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2005.

Two weeks from their parturition, nine lactating buffaloes were used in a feeding trial to study the effect of maize silage inoculated with bacteria on their performance. The inoculants were pioneer 1132 which were composed of 100 billion Colony Forming Unit (CFU) per gm of crop specific Lactobacillus plantarium and Enterococcus facium. Animals were grouped into 3 feeding treatments, according to their weight and milk yield. They were introduced to rations containing 50%:50% roughage of forage: concentrate ratio as an amount of dry matter equal to 3.5% of their live body weight. The control group G1 was fed concentrate feed mixture CFM which composed of 25% undecorticated cotton seed meal, 35% wheat bran, 30% yellow corn, 3% rice bran, 3% molasses, 2% limestone, 1% urea and 1% mineral salts. and rice straw as the traditional feeding regimen in summer in Egypt, G2 was fed CFM and untreated maize silage and G3 was fed CFM and maize silage inoculated with bacteria. The treatments extended for 3 months after the two weeks of parturition. DM, OM, CP, CF and NFE digestibility coefficients in G3 were higher than those in G1 and G2, while EE digestibility was unaffected by treatments. Milk yield and 4% FCM yield increased significantly with inoculated silage than the other treatments. Milk composition in G3 was higher in TS, Fat, and lactose values (P<0.01) than values recorded for G1 and G2. Consequently, G3 produced more TS, SNF Fat, Lactose and Ash (P<0.01) than the other Two groups. Some values of blood serum parameters were discussed. The inoculated silage group performed better than the other two groups in feed and economic efficiency.

Key words: Inoculated silage, Lactating buffaloes, Lactobacillus planetarium, Enterococcus faecium.

CONTENTS

					Page
1.	INT	RODUC	ΓΙΟΝ	•••••	1
2.	REV	REVIEW OF LITERATURE			3
	2.1.	Plant si	lage matur	ity and quality	3
	2.2.	Microbi	ial inoculat	tion to silage	4
	2.3.	Ensiling	g Treatmen	nt	11
		2.3.1.	The aerobi	ic phase	11
		2.3.2.	The anaero	obic phase	11
		2.3.3.	The storag	ge phase	11
		2.3.4.	The feedor	ut phase	13
		2.3.5.	Changes	occurring in the silage due to aerobic	
			deteriorati	on	14
		2.3.6.	The advan	tages of silage	15
		2.3.7.	The disadv	vantages of silage	16
		2.3.8.	Making sil	lage losses	17
			2.3.8.1.	Field losses	18
			2.3.8.2.	Fermentation losses	18
			2.3.8.3.	Respiration losses	19
			2.3.8.4.	Effluent losses	19
		2.3.9.	Silage Tro	buble Shooting	19
			2.3.9.1.	Vinegar order	19
			2.3.9.2.	Alcohol order	20
			2.3.9.3.	Rancid milk order	20
			2.3.9.4.	Hot silage $> 120^{\circ}$ F	20
			2.3.9.5.	Poor bunk life	20
			2.3.9.6.	Frozen silage	20
			2.3.9.7.	Caramelized dark brown kernels	20
			2.3.9.8.	Poor intake	21
			2.3.9.9.	Moldy silage	21
		2.3.10.	. Effect of	ensiling treatments on characteristics of the	
			_		21
		2.3.11.	. Silage qua	lity	23

	Page
2.3.12. Maize silage	30
2.3.13. Chemical composition of maize silage	31
2.3.14. Nutritive value of maize silage	34
2.3.15. Nutritive digestibilities	35
2.3.16. Feed intake	39
2.4. Milk yield and composition and fattening	41
3. MATERIAL AND METHODS	48
3.1. Experiment No. 1	48
3.1.1. Silage making	48
3.1.2. The chemical analysis and physical characteristics during the	
ensiling periods	49
3.1.2.1.Proximate chemical analysis	49
3.1.2.2.Fiber fractions determination	50
3.1.3. Determination of silage quality	50
3.2. Experiment No. 2: Feeding Trial	50
3.2.1. Experimental animals	50
3.2.2. Experimental rations	51
3.2.3. Management	53
3.3. Digestibility Trial	53
3.4. Sampling of blood	54
3.5. Sampling of milk	54
3.6. Method of analysis	55
3.6.1. Blood serum analysis	55
3.6.1.1. Serum total protein	55
3.6.1.2. Serum albumin	55
3.6.1.3. Serum globulin	55
3.6.1.4. Albumin: Globulin ratio A/G (ratio)	55
3.6.1.5. Serum aminotransferase	55
3.6.1.6. Serum urea	55
3.6.1.7. Serum creatinine	55
3.6.1.8. Serum glucose	56
3.6.1.9. Serum cholesterol	56
3.6.1.10. Serum triglycerides	56

	Page
3.6.2. Milk analysis	56
3.6.2.1.Titra table acidity and PH	56
3.6.2.2.Total solids	56
3.6.2.3.Fat	56
3.6.2.4.Fat corrected milk (FCM)	56
3.6.2.5.Solids not fat	57
3.6.2.6.Lactose	57
3.6.2.7.Total protein	57
3.6.2.8.Ash	57
3.7. Feed efficiency and economic efficiency	57
3.8. Statistical analysis	57
4.RESULTS AND DISCUSSION	59
4.1. The first experiment	59
4.1.1. Chemical composition	59
4.1.2. Quality characteristics of maize silage at different ensilage periods	
	59
4.1.2.1. Silage PH	59
4.1.2.2. NH3-N concentration as DM %	60
4.1.2.3 Total VFA'S concentration	61
4.2 Effect on digestibility coefficients	61
4.3. Effect on blood serum parameters	63
4.4. Effect on milk yield and composition	78
4.4.1. Milk PH and acidity	78
4.4.2. Effect on milk yield and composition	80
4.5. Feed efficiency	89
5- SUMMARY AND CONCLUSION	91
6- REFERENCES	95
7- ARABIC SUMMARY	

LIST OF TABLES

Tabl	le	Page
1-	Chemical composition of maize silage (%DM) as reported	
	by different authors	33
2-	Average nutritive values TDN and DCP of different maize	
	silage harvested at dough stage using different species of	
	animals as reported by different authors	34
3-	Average nutrient digestibilities of maize silage made of	
	different varieties harvested at different stages of maturity	
	using different species of animals as reported by different	
	several authors	38
4-	Chemical composition of the concentrate feed mixture	
	(CFM), rice straw (RS), untreated maize silage (UMS) and	
	treated maize silage (TMS) on % dry matter basis	52
5-	Calculated chemical composition of experimental rations	
	used in lactation trial on% dry matter basis	52
6-	Effect of different treatments on nutrients digestibility of	
	lactating buffaloes during 105 days of lactation season (%)	62
7-	Effect of the treatments on blood serum parameters	64
8-	Effect of inoculated bacteria of maize silage on serum	
	glucose (mg/dL) of lactating buffalos	64
9-	Effect of inoculated bacteria of maize silage on serum total	
	proteins (g/dL) of lactating buffalos	66
10-	-Effect of inoculated bacteria of maize silage on serum	
	albumin (g/dL) of lactating buffalos	67
11-	-Effect of inoculated bacteria of maize silage on serum	
	globulin (g/dL) of lactating buffalos	68
12-	- Effect of inoculated bacteria of maize silage on serum A/G	
	Ratio of lactating buffalos	69
13-	- Effect of inoculated bacteria of maize silage on serum urea	
	(mg/dL) of lactating buffalos	71

Table	Page
14- Effect of inoculated bacteria of maize silage on serum total	
cholesterol (mg/dl) of lactating buffalos	72
15-Effect of inoculated bacteria of maize silage on serum	
triglycerides (mg/dL) of lactating buffalos	73
16-Effect of inoculated bacteria of maize silage on serum	
GOT (U/l) of lactating buffalos	75
17- Effect of inoculated bacteria of maize silage on serum GPT	
(U/l) of lactating buffalos	76
18- Effect of inoculated bacteria of maize silage on serum	
creatinine (mg/dL) of lactating buffalos	77
19- Effect of inoculated bacteria of maize on milk pH of	
lactating buffaloes	78
20- Effect of inoculated bacteria of maize on milk acidity % of	
lactating buffaloes	79
21- Effect of different ration on milk yield and composition of	
lactating buffaloes	81
22- Effect of different experimental rations on the yield of	
milk constituents of lactating buffaloes	82
23- Effect of lactation period on milk and its constituents	87
24- Effect of lactation periods on milk composition	88
25- Feed intakes, feed efficiency and economic efficiency of	
the experimental rations	90

LIST OF FIGURES

Figur	e	Page
1-	Effect of bacterial inoculation of maize silage on nutrient	
	digestibility coefficients of the experimental rations	63
2-	Effect of bacterial inoculation of maize silage on glucose	
	(mg/dL) of lactating buffalos	65
3-	Effect of bacterial inoculation of maize silage on serum	
	total protein (g/dL) of lactating buffaloes	66
4-	Effect of bacterial inoculation of maize silage on serum	
	total albumin (g/dL)of lactating buffalos	68
5-	Effect of bacterial inoculation of maize silage on serum	
	total globulin (g/dL) of lactating buffalos	69
6-	Effect of bacterial inoculation of maize silage on A/G ratio	
	of lactating buffalos	70
7-	Effect of bacterial inoculation of maize silage on urea	
	(mg/dL) of lactating buffalos	71
8-	Effect of bacterial inoculation of maize silage on serum	
	total cholesterol (mg/dL) of lactating buffalos	73
9-	Effect of bacterial inoculation of maize silage on serum	
	triglycerides (mg/dL) of lactating buffalos	74
10-	Effect of bacterial inoculation of maize silage on GOT	
	(U/l) of lactating buffalos	75
11-	Effect of bacterial inoculation of maize silage on GPT	
	(U/l) of lactating buffalos	76
12-	Effect of bacterial inoculation of maize silage on creatinine	
	(mg/dL) of lactating buffalos	77
13-	Effect of inoculated bacteria of maize on milk pH of	
	lactating buffaloes	79
14-	Effect of inoculated bacteria of maize on milk acidity % of	
	lactating buffaloes	80

VII

Figure		
15- Eff	ect of different experimental rations on milk yield	
(kg	(day) and 4% FCM yield of lactating buffaloes	81
16- Eff	ect of different experimental rations on milk	
con	nposition of lactating buffaloes	82
17- Eff	ect of inoculated bacteria of maize silage on milk total	
soli	id yield (kg/h/d)of lactating buffaloes	83
18- Eff	ect of inoculated bacteria of maize on milk fat yield	
(kg	t/h/d) of lactating buffaloes	83
19- Eff	ect of inoculated bacteria of maize on milk solids not	
fat	yield (kg/h/d) of lactating buffaloes	84
20- Eff	ect of inoculated bacteria of maize on milk total protein	
yie	ld (kg/h/d) of lactating buffaloes	84
21- Eff	ect of inoculated bacteria of maize on milk lactose	
yie	ld (kg/h/d) of lactating buffaloes.	85
22- Eff	ect of inoculated bacteria of maize on milk ash yield	
(kg	y/h/d) of lactating buffaloes	85
23- Eff	ect of lactation period on milk and its constituents	87
24- Eff	ect of lactation period on milk composition	88

INTRODUCTION

Many factors in maize silage management can influence silage quality and its fermentation characteristics. Studies have demonstrated some of the chemical changes that occur in the corn plant as it matures and leads to less fermentable substrates being available for lactic acid producing bacteria (McDonald et al 1991) resulting in low silage quality. As the corn plant matures, water-soluble carbohydrate (WSC) level decreases and the starch level increases in whole plant corn producing less fermentable substrate available for lactic acid producing bacteria. This has the potential of delaying fermentation and may result in low quality silage. Several studies have demonstrated the effect of bacterial inoculation into corn silage on silage fermentation characteristics (Harrison et al 1996; Higginbotham et al 1998; Cai et al 1999; and Ranjit & Kung et al 2000).

Maintenance of an anaerobic environment in the silo during the fermentation and storage phases and maintenance of aerobic stability of silage during the feed out phase (time when silage is removed from silo) are important factors in silage preservation (Bolsen et al 1996). Failure to achieve such conditions may cause lower recovery of nutrients, and the production of poor quality silage results in reduced DMI and animal performance (Chen et al 1994). Earlier criteria for the effective preservation of an ensiled crop included a high degree of lactic acid production and a pH below 4.2 after the fermentation phase (Bolsen et al 1996, Cleale et al 1990). The criteria usually produce silage that is stable under anaerobic conditions. However, upon exposure to air, silage quality might be reduced because of the introduction of oxygen, which promotes the growth of yeast, molds, and aerobic bacteria. During exposure to air during the feed out phase, silage also might undergoes increases in temperature and pH and losses in water-soluble carbohydrates (WSC) and in fermentation end products (Pitt et al 1991), which reduce silage quality. The duration of time before the temperature

of the silage rises (i.e., aerobic stability) affects the nutrient losses in the silo, the likelihood of toxic effects of fungal growth in silage fed to animals, and the degree of management required to minimize exposure to air during the feed out phase (Pitt et al 1991).

Silage additives primarily that containing lactic acid bacteria (LAB), have been investigated as a mean to improve the aerobic stability of silage. Inoculation of a crop with LAB at ensiling was speculated to improve aerobic stability by providing competition with yeast during the aerobic and fermentation phases (Honig, 1990). Some studies have shown improvements in the aerobic stability of silage from forage inoculated with LAB prior to ensiling (Woolford, 1975), but other studies have shown negative effects (Moon et al 1980, Rust et al 1989) or no effect (Schaefer et al 1989 and Sanderson 1993).

2. REVIEW OF LITERATURE

2.1. Plant silage maturity and quality:

In a study conducted by **Bal** *et al* (1997); the whole – plant corn was harvested at early dent, quarter milk line, two – third milk line and black layer stages to evaluate the effects of maturity on intake, digestion, and milk production when corn was fed as silage in the diet for twenty multiparous holstein cows, which diets contained 50 % forage: 50 % concentrate (dry matter basis). They found that intakes of DM were similar across the four treatments and ranged from 3.73 – 3.79 % of body weight.

Also, milk protein production was highest for cows fed silage from corn harvested at two – thirds milk line stage. Also, apparent total digestion of DM, OM, CP, ADF and starch was lowest for cows fed silage from corn harvested at the black layer stage.

Bal *et al* (1997) concluded that, the optimum stage for corn that was ensiled was two – thirds milk line with some flexibility between quarter and two – third milk line.

Bendary *et al* (2001); determined the chemical composition and yield of the whole plants of corn crop of 10 common hybrids and varieties and quality, nutritive value and nutrients production produced / feddan from corn silage of these hybrids and varieties. They found that, the higher yield of whole forage on DM basis were recorded for summer crops, single crosses, Watania – 4, 10 and three way cross 320 (7.27, 6.86 and 6.37 ton/feddan, respectively) and corresponding values of DM produced as silage from these hybrids were 6.94, 6.53 and 6.06 ton/feddan, respectively, while Giza – 2 variety (Nili crop) achieved the least yields of whole plant and silage (3-71 and 3-51 ton/feddan). They added that three way cross pioneer – Daheb and single cross 10 recorded the highest grain content from the whole plant (40.30 and 37.17%, respectively). They noticed that, all corn hybrids and varieties produced good quality silage except single cross 158, which had a dark