BIOCHEMICAL STUDIES ON VOLATILE OILS OF THYME, CARAWAY AND CORIANDER PLANTS AND THEIR EFFECTS ON VARROA CONTROL

By

RAMADAN FARGHALI MOHAMED HAMAAD

B.Sc. (Agric. Sci.), Fac. Agric., Minia Univ., Egypt, 1992 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Minia Univ., Egypt, 1997

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Biochemistry)

Department of Biochemistry Faculty of Agriculture Cairo University EGYPT

2008

APPROVAL SHEET

BIOCHEMICAL STUDIES ON VOLATILE OILS OF THYME, CARAWAY AND CORIANDER PLANTS AND THEIR EFFECTS ON VARROA CONTROL

Ph.D. Thesis By

RAMADAN FARGHALI MOHAMED HAMAAD

B.Sc. (Agric. Sci.), Fac. Agric., Minia Univ., Egypt, 1992 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Minia Univ., Egypt, 1997

Approved by:
Dr. MOHAMED ABD ALLAH SALEH
Head Researcher, Central Agric. Pesticides Lab., Agric. Research Center
Dr. ABD EL-KADER MOORSY EL-SAYED ABD EL-SAMAD Professor of Biochemistry, Fac. Agric., Cairo University.
Dr. NADIA MOHAMED ABD EL- MOEIN
Professor of Biochemistry, Fac. Agric., Cairo University

Date: 27 / 05 / 2008

SUPERVISION SHEET

BIOCHEMICAL STUDIES ON VOLATILE OILS OF THYME, CARAWAY AND CORIANDER PLANTS AND THEIR EFFECTS ON VARROA CONTROL

Ph.D. Thesis By

RAMADAN FARGHALI MOHAMED HAMAAD

B.Sc. (Agric. Sci.), Fac. Agric., Minia Univ., Egypt, 1992 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Minia Univ., Egypt, 1997

SUPERVISION COMMITTEE

Dr. NADIA MOHAMED ABD- EL MOEIN

Professor of Biochemistry, Fac. Agric., Cairo University

Dr. MOHAMED EL-SAYD RAMADAN

Professor of Biochemistry, Fac. Agric., Minia University

Dr. HAMDI ALI EL-DOKSH

head Researcher, Central Agric. Pesticides Lab., Agric. Research Center.

Dr. MOHAMED SAAD ABD EL-LATIF

Lecturer of Biochemistry, Fac. Agric., Cairo University

Name of Candidate: Ramadan Farghali Mohamed Hamaad Degree: Ph.D. Title of Thesis: Biochemical Studies on Volatile Oils of Thyme, Caraway

and Coriander Plants and their Effects on Varroa Control.

Supervisors: Prof. Dr. Nadia Mohamed Abd-El Moein,

Prof. Dr. Mohamed El-Sayd Ramadan,

Dr. Hamdi Ali El-Doksh and Dr. Mohamed Saad Abd El-Latif

Department: Biochemistry

Branch: Biochemistry

Approval: 27/05/2008

ABSTRACT

This work was carried out to find a local effective alternative varroacide which can be used for varroa mite control in Egyptian honey bee apiaries. Essential oils of thyme, caraway and coriander plants or their individual components were screened and evaluated for their acaricidal effects. Chemical composition of each essential oil was studied. Also, the study aimed to find a suitable inert carrier material which can be used for formulate a commercial varroacides preparations. Thymol residues in honey and wax were also studied. The major components of steam distilled thyme essential oil were thymol (34.27%) followed by caryophyllene (10.79 %), and p-cymene (8.97%). However, the major components were thymol (16.95%) followed by caryophyllene (8.71%), p-cymene (8.38%) and γ-terpinene (7.05%) in the hydrodistilled one. In caraway, the major components were S (+)carvone (58.58%) and limonene (27.36%) for steam distilled essential oil and were limonene (47.57%) and S (+)-carvone (22.0%) followed by carvol (10.8%) in the hydrodistilled one. Linalool (35.06%) and citral (11.61%) were the main components of the steam distilled coriander essential oil. The percentages in hydrodistilled one were (38.38%) and (7.96%) for linalool and citral, respectively. The most effective treatment against varroa was caraway essential oil (71.7± 5.9%) followed by thyme essential oil (65.9 \pm 8.5 %) and coriander essential oil (43.1 \pm 9.4%). Carriers study indicated that thick paper is the most suitable inert carrier material followed by vermiculite and thin paper at thymol dosage rate of between 2.5 and 5 g. The efficacy of thymol dosage rate of 10 g per colony was 97.8%, 95.75% and 13.9% for thymol-vermiculite preparation, thymol-thick paper preparation and control group, respectively. However, at thymol dosage rate of 5 g per colony it was 92.6%±5.0, 94.7%±1.9 and 36.9%±5.9 for thymol-vermiculite preparation, thymol-thick paper preparation and control group, respectively. At thymol dosage rate of 10 g, thymol residues in honey were 2.10 ± 0.22 mg/kg for thymol-vermiculite preparations group, 2.02 ± 0.12 mg/kg for thymol-thick paper preparations group, and 1.32 ± 0.08 mg/kg for control group, respectively. The residues were higher in wax 371.5 ± 165.4 mg/kg for thymol-vermiculite preparations, 475.0 ± 140.9 mg/kg for thymol-thick paper preparations, and $87.5 \pm$ 3.2 mg/kg for control group.

Key Words: Varroa, thymol, thyme, caraway, coriander, essential oil.

DEDICATION

I dedicate this work to whom my heart felt thanks; to my brother Hamdi, all my friends, as well as to my parents and my wife Nadia for all the support they lovely offered along the period of my post graduation. I also dedicate this work to my lovely sons Zead and Hazem as well as to my nephew Hazem Hamdi.

ACKNOWLEDGEMENT

I wish to express my deep gratitude to **Prof. Dr. ABD EL-KADER MORSY ABD EL-SAMAD**, Professor of Biochemistry Fac. Agric., Cairo University, for his supervision, efforts, continuous encouragement, kind assistance, writing, reviewing and fulfill this work.

My sincere appreciation and deep thanks to **Prof. Dr.**Nadia Mohamed Abd-El Moein, Professor of Biochemistry Fac.

Agric., Cairo University, for her supervision, continuous encouragement, valuable advice, guidance, supporting, constructive criticism.

My sincere appreciation and deep thanks to **Prof. Dr.**Mohamed El-Sayd Ramadan, Professor of Biochemistry Fac.

Agric., Minia University, for his supervision, help, cooperation and kind assistance in completing this work.

My sincere appreciation and deep thanks to **Dr. Hamdi Ali El-Doksh**, Head Researcher of pesticide chemistry at Pesticide Residues and Environmental Pollution Department, Central Agric. Pesticides Lab., Agric. Research Center, Ministry of Agric. for his supervision, continuous encouragement, valuable advice, guidance.

Many thanks to **Dr. Mohamed Saad Abd El-Latif**, Assistant Professor of Biochemistry, Fac. Agric., Cairo University, for his supervision throughout this work.

CONTENTS	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Essential oil content of thyme and chemical composition of	
thyme essential	5
a. Essential oil content	6
b. Chemical composition of thyme essential oil	8
2. Essential oil content of caraway fruits "seeds" and	
chemical composition of caraway essential oil	23
a. Essential oil content.	24
b. Chemical composition of caraway essential oil	26
3. Essential oil content of coriander fruits "seeds" and	
chemical composition of coriander essential oil	31
a. Essential oil content.	32
b. Chemical composition of coriander essential oil	33
4. Control of Varroa	41
a. Control of varroa using essential oils	43
b. Control of varroa using essential oils constituents	59
c. Control of Varroa Using Emulsifier Agents	73
5. Side effects of using thymol for controlling varroa	
mite	73
6. Thymol residues in honey and wax	79
MATERIALS AND METHODS.	
1. Plant material	83
2. Preparation of samples	83
3. Chemicals	83
4. Carriers	83
5. Hives	83
6. Laboratory experiments	84
a. Extraction of thyme, caraway and coriander essential oils	
using hydro and steam distillation and determination of	
essential oil content.	84
b. Analysis of thyme, caraway and coriander essential oils	
using Gas Chromatography-Mass Spectrometry (GC-MS)	85
c. Thymol residue analysis	86
d. Studying of different carriers and different thymol dosage	87

rate on the release rate (release profile) of thymol from	
the formulations	
7. Field experiments	89
a. Evaluation of thyme, caraway and coriander essential oils	
for their effects against varroa mite	91
b. Testing the thymol dosage rate (10 g per colony) using	
two different inert absorbent carrier materials (vermiculite	
and thick condensed paper) for its efficacy against varroa	
mite	92
c. Screening of three thymol dosages for their efficacy	
against varroa mite	94
d. Testing a lower thymol dosage (5 g per colony) using two	
different inert absorbent carrier materials (vermiculite and	
thick paper) for its efficacy against varroa mite	95
8. Statistical analysis	97
RESULTS AND DISCUSSION	98
1. Essential oil content of thyme, caraway and coriander	
plants	98
2. Chemical composition of thyme, caraway and coriander	
essential oils	100
3. Efficacy of thyme, caraway and coriander essential oil	
against Varroa mite	108
4. Testing the acaricidal activity of different formulations of	
thymol against varroa mite	113
5. Release profile of thymol preparations	121
	101
6. Thymol residues	131
	131
CONCLUSION	
CONCLUSION.	134

LIST OF TABLES

No	Title	Page
1.	Essential oil content of thyme, caraway and coriander plants	99
2.	Chemical composition of thyme essential oil obtained by steam distillation and hydrodistillation	102
3.	Chemical composition of Caraway essential oil obtained by steam distillation and hydrodistillation	104
4.	Chemical composition of Coriander essential oil obtained by steam distillation and hydrodistillation	107
5.	Mean percentage of varroacidal effect of thyme, caraway and coriander essential oils and the emulsifier agent (Tween 80)	109
6.	Mean percentage of varroacidal effect of thymol dosage rate (10 g per colony) using two different inert absorbent carrier materials (vermiculite and thick condensed paper)	114
7.	Mean percentage of varroacidal effect of three thymol dosages (5, 7.5 and 10 gram / colony) using vermiculite as a carrier.	117
8.	Mean percentage of varroacidal effect of thymol dosage rate (5 g / colony) using two different inert absorbent carrier materials (vermiculite and thick condensed paper)	120
9.	Release rate (g/ day) of thymol-vermiculite preparations (mean values)	124
10. 11.	Release rate (g/ day) of thymol-thick paper preparations Release rate (g/ day) of thymol-thin paper preparations (mean values)	126 128
12.13.	Honey thymol residues in treated and control colonies	131
	Wax thymol residues in treated and control colonies	133

LIST OF FIGURES

No	Title	Page
1	Mean percentage of varroacidal effect of Thyme, Caraway and Coriander essential oils and the emulsifier agent (Tween 80)	110
2	Mean percentage of varroacidal effect of thymol dosage (10 g) using two different inert absorbent carrier materials (vermiculite and thick condensed paper)	115
3	Mean percentage of varroacidal effect of three thymol dosage rates (5, 7.5 and 10 gram / colony) using vermiculite as a carrier.	118
4	Mean percentage of varroacidal effect of thymol dosage (5g) using two different inert absorbent carrier materials (vermiculite and thick condensed paper)	121
5	Percentage of thymol released from thymol-vermiculite preparations at different dosage rates	123
6	Release rate (g/ day) of thymol-vermiculite preparations at different dosage rates	123
7 8	Percentage of thymol released from thymol-thick paper preparations at different dosage rates	125 125
9	Percentage of thymol released from thymol-thin paper preparations at different dosage rates	127
10	Release rate (g/ day) of thymol-thin paper preparations at different dosage rates	127
11	Release rate (g/ day) of thymol from the three preparations thymol-vermiculite, thymol-thick paper and thymol-thin	120
12	paper at rate of 5 g of thymol (mean values) Percentage of thymol released from the three preparations thymol-vermiculite, thymol-thick paper and thymol-thin	129
	paper at rate of 5 g of thymol (mean values)	130

INTRODUCTION

Varroa destructor (Anderson and Ttrueman, 2000) is the most destructive ectoparasitic mite of honey bee (Apis mellifera L.). It was first described on the Asian honey bee, Apis cerana Fabr (Oudemans, 1904). The new host infestation (*Apis mellifera*) occurred in the 1950, when European productive bees were introduced to Asia (Ian Tsin-He, 1965). Now, it is infested honey bees in most parts of the world. Infestations of this mite in North America have reached epidemic proportions, with annual losses of untreated colonies soaring as high as 50-80% in some areas of United States (Kraus and Page, 1995; Finley et al., 1996). In 1995-1996, the U.S. reported epidemic losses of managed bee colonies, ranging from 25 to 80% (Finely et al., 1996). Most commercial colonies die following 1-2 years of consecutive infestation without treatment (Martin et al., 1998; Downy and Winston, 2001). It damages bee colonies by feeding on haemolymph of honey bee larvae and pupae (Anderson and Ttrueman, 2000), resulted in severe deformation of wings and legs, reduced worker longevity, smaller population size, and colony death if left untreated (De Jong, 1990; Genc and Aksoy, 1992).

The first *V. distructor* mite detection in Egypt was in September 1987 at El-Arish region (Yousif-Khalil, 1992). By September 1989 this mite had become widespread, and by the autumn 1990 a heavy infestation was found in many parts of Egypt, and many apiaries were nearly destroyed (Abou-Zeid and Ghoniemy, 1993).

Varroa control requires that treatments must be mite selective (*i.e.*, fatal to mites at doses that are harmless to bees), and leave no or minimal residues in honey and wax (Ferrer-Dufol *et al.*, 1991).

In the past few years, several studies have focused on the potential use of essential oil applications in biological control of different insect pests. The essential oils may be more rapidly degraded in the environment than synthetic compounds, and some have increased specificity that favors beneficial insects (Pillmoor *et al.*, 1993). Botanical products such as essential oil constituents and organic acids have demonstrated potential for mite control. They are inexpensive to produce and many such products have been exempted from the costly registration process in the United States and Canada of their low mammalian toxicity (Quarles, 1996).

Different products, chemical and natural, are currently used for controlling this mite infestation. However, this mite still causes severe damage in apiaries because of its higher reproduction rate than its host (Ifantidis, 1983 and DE Ruijter, 1987), and the adaptation between the mite and the host's life cycle (Haenel and Koeniger, 1986). Additionally, *V. destructor* are developing resistance to the most common chemical acaricides fluvalinate and comaphose (Elzen *et al.*, 1998; Milani, 1999 and Elzen *et al.*, 2000). Other synthetic Varroa treatment such as flumethrine and bromopropylate leave toxic residues (Lodesani *et al.*, 1992). Thus, there is an urgent need for an alternative treatment such as organic acids and essential oil constituents that are effective, and do not leave toxic residues in honey and wax. Essential oil constituents such as thymol (5-methyl-2-isopropyl phenol) have

demonstrated a varroacidal activity not only in laboratory assays, but also in field in Europe (Imdorf *et al.*, 1999), and in North America (Caledrone, 1999). Thymol comes from the herb thyme (*Thymus vulgaris* L.). It has the same molecular weight and formula as carvacrol (Prakash, 1990 and Leung and Foster, 1996). Thymol is a white or colorless crystal or powder and one gram is soluble in alcohol (1ml), olive oil (1.7ml) or water (1L) (Budavari, 1996). Thymol is used as an antioxidant and has activity against bacteria, molds and fungi (Panizzi *et al.*, 1993; Shapiro *et al.*, 1994; Eldosch and Hassanien, 2007). It also has larvicidal activity, antiseptic and anthelimintic properties (especially for hookworms and nematodes), and is used as a meat preservative at 0.0003 % (Leung and Foster, 1996).

Different thymol-based formulations have been studied to improve acaricide effectiveness, attempting to control the phenol release by different carriers. Thymol formulations significantly reduced the levels of the mite infestation of adult bees and sealed brood (Floris *et al.*, 2004). The environmental conditions, colony condition, and the carrier of the active ingredient play an important role in the thymol effectiveness against Varroa (Baggio *et al.*, 2004). Some of these formulations such as Apilife VAR, Thymovar, and Apiguard are registered as a control of Varroa mite in different countries.

The choice of formulation is influenced by several factors, such as the physical, chemical, and biological properties of the pesticide; the mode of application; the crop to be treated; and agricultural practices. Economic considerations also have to be taken into account, particularly when repeat field applications are necessary to maintain

pest control. Controlled-release formulations allowing smaller quantities of pesticide to be used more effectively over a given time interval seem to be the best choice to meet these multiple demands of efficacy, suitability to mode of application, and minimization of environmental damage (Kydonieus, 1980). Currently, the use of illegal, unauthorized synthetic acaricides such as Dicofol is the most common control tactic for the Varroa mite in Egypt.

The aim of this study was to screening and evaluating several plant essential oils and/ or their individual components that may have acaricidal effects with little or no hazardous effects on honey bees with their advantages of low cost and low health and environmental hazards for both consumers and bee keepers. Also, the study aimed to find a suitable inert carrier material which can be used for formulate a commercial varroacides preparations. Thymol residues in honey and wax were also studied.

In this work, three essential oils of different chemical composition were first formulated as emulsion oil in water (o/w) and tested in apiary trials to determine their efficacy against varroa mite. The most promising oils and/or one of their constituents were then formulated as tables and strips as a potential new tool for varroa mite control.

REVIEW OF LITERATURE

1. Essential oil content of thyme and chemical composition of thyme essential oil

Thyme (*Thymus vulgaris* L.), belonging to the Lamiaceae family (Davis, 1982). The genus *Thymus* L. consists of about 215 species of herbaceous perennials subshrubs. The Mediterranean region can be described as the center of the genus (Stalil-Biskup and Saez, 2002).

T. vulgaris, also known as common thyme, a plant native to the Mediterranean region (Spain, Italy, France, Greece, etc.), has long been used as a source of the essential oil (thyme oil) and other constituents (e.g. thymol, flavanoid, caffeic acid and labiatic acid) derived from the different parts of the plant (Leung and Foster, 1996). The pharmacological properties of the plant and of its different extracts, in particular the essential oils, has been thoroughly studied and afforded the many industrial (mainly as food additive) and medical applications of the plant (Soulier, 1995).

Evaluations of the oil composition extracted from different parts of the plant or upon variable environmental, cultivation, and/or storage conditions have also been reported (Gouyon and Vernet, 1986; Venskutonis *et al.*, 1996; Guillen and Manzanus, 1998).

In addition to their numerous traditional uses, the plant (herb) and its essential oil have found diverse applications in pharmacy and medicine (Soulier, 1995; Leung and Foster, 1996). The oil was reported to have antimicrobial (bacteria and fungi) (de Bouchberg *et al.*, 1976; Ferhout *et al.*, 1999; Chao *et al.*, 2000; Horne *et al.*, 2001), carminative