DEVELOPMENT OF RESISTANCE TO CERTAIN INSECTICIDES IN THE PINK BOLLWORM PECTINOPHORA GOSSYPIELLA (Saund.)

BY

HEMAT ZAKARIA MOHAMED MOUSTAFA

B.Sc.Agric.Sc. (Pesticides), Ain Shams University, 1999

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

In Agricultural Science (Pesticides)

Department of Plant Protection Faculty of Agriculture Ain Shams University

2005

Approval Sheet

DEVELOPMENT OF RESISTANCE TO CERTAIN INSECTICIDES IN THE PINK BOLLWORM PECTINOPHORA GOSSYPIELLA (SAUND.)

\mathbf{BY}

	MAT ZAKARIA MOHAMED MOUSTAFA Sc. Agric. Sc. (Pesticides), Ain Shams University,1999
This th	esis for M. Sc. degree has been approved by:
	or. Adel Abd El-Hameed El Feshawyrof. of Pesticides, Faculty of Agriculture, Zagazig University
Pı	or. Mohamed Ibrahim Abdel-Megeedof. Emeritus of Pesticides, Faculty of Agriculture, Ain nams University
Pı	or. Mohamed El-Said Saleh El-Zemaityof. of Pesticides, Faculty of Agriculture, Ain Shams niversity

Date of Examination: 27 / 4 / 2005

DEVELOPMENT OF RESISTANCE TO CERTAIN INSECTICIDES IN THE PINK BOLLWORM PECTINOPHORA GOSSYPIELLA(Saund.)

BY

HEMAT ZAKARIA MOHAMED MOUSTAFA

B. Sc. Agric. Sc. (Pesticides), Ain Shams University, 1999

Under the supervision of:

Prof. Dr. Mohamed El-Said Saleh El -Zemaity

Prof. of Pesticides , Department of Plant Protection, Faculty of Agriculture, Ain Shams University

Dr.Alaa El-Din Bayoumi Abdel Khalek

Associate Prof. of Pesticides, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

Prof. Dr. Mona Fikri Rofail

Senior Researcher, Plant Protection Research Institute, Agricultural Research Center

ABSTRACT

Hemat Zakaria Mohamed Moustafa. Study of the development of resistance to certain insecticides *Pectinophora gossypiella* (Saund.). Unpublished M.Sc. thesis, Ain shams University, Faculty of Agriculture, Department of Plant Protection, 2005.

Two field strains of pink bollworm Pectinophora gossypiella (Saund) collected from Sharkia governorate were exposed to the selection pressure of pyrethroid deltamethrin and to Bacillus thuringiensis subsp. Kurstaki (Dipel 2x) in artificial diet by using adequate method to each compound under laboratory condition. After 14 generations of selection pressure resistance of deltamethrin increased to 215.11-fold compared to susceptible strain. In Dipel 2x resistant strain was obtained after 7 generations. Resistance ratio attained 16-fold based on the susceptible strain after14 generations of selection. Study the response of deltamethrin and Dipel 2x resistant strains to some insecticides indicated that there is cross resistance to esfenvalerate was 23.75-fold in deltamethrin strain compared to the susceptible strain and no cross resistance occurred to thiodicarb, chlorpyrifos and the bioinsecticides Ecotech and Agerin. In Dipel 2x resistant strain there is to the conventional insecticides, esfenvalerate, no cross resistance chlorpyrifos, thiodicarb or the bioinsecticides Ecotech and Agerin. These data may be emphasize the possibility of rotation Dipel 2x with these insecticides in pest control program of pink bollworm to manage resistance to B.t. products. Detoxication enzymes assay revealed that activity of glutathion S- transferase were higher in all selected generations than susceptible strain. In phosphatases activity, acid phosphatase increased than susceptible in all generations in Dipel 2x strain, alkaline phosphatase decreased in all generations than the susceptible strain. Study of protein electrophoresis in gut of resistant and susceptible larvae revealed that there are new bands appear in the

resistant strains and disappear in susceptible strain. Cross sections of larvae midgut of deltamethrin and Dipel 2x resistant strains showed histological changes in epithelium cells than susceptible, development of resistance resulted in thickness of epithelium cells.

Key words: pink bollworm, resistance, selection, pyrethroid, *Bacillus thuringiensis*, cross resistance.

ACKNOWLEDGEMENT

First of all ultimate thanks are to Allah

I wish to express my deep apperception and sincere gratitude to **Prof. Dr. Mohamed Said Saleh El-Zemaity.** Professor of Pesticides, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, for his supervision, reading the manuscript, helpful suggestion and constructive criticism.

My deepest gratitude is extended to **Dr. Alaa El-Din Bayoumi Abdel Khalek.**, Associate Proffessor of Pesticides, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, for his helpful suggestion and advices throughout this study.

Deep graditude is also due to **Prof. Dr. Mona Fikri Rofail** Senior Researcher, Plant, Protection Research Institute, Agricultural Research Center, for her supervision, useful guidance and follow up the experiment.

Deep thanks, also to **Prof. Dr. Amira M. Rashad and Prof. Dr. Alia Abdel Hafez**, Senior Researcher, at Bollworm Research Division,
Plant Protection Research Institute, Agriculture Research Center for her
valuable help in conducting statistically analyses of the data.

Deep appreciation is also extended to all staff members and colleagues of the Bollworm Research Division, Plant Protection Research Institute, Agriculture Research Center, for their help and cooperation throughout the period of this study.

CONTENTS

	Pag
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
1-Development of resistance	3
1.1- Development of resistance to pyrethroid insecticides	3
1.2- Development of resistance to bioinsecticide	8
2-Cross resistance spectra of the resistant strains to various	
insecticides	17
2.1-Cross resistance to pyrethroids	17
2.2-Cross resistance to <i>B. thuringiensis</i>	20
3-Mechanisms of insects resistance	24
3.1- Biochemical aspects	24
3.1.1-Glutathione S- transferase	24
3.1.2-Phosphatases	26
3.2- Electrophoretic pattern	27
3.3- Histological changes	29
III. MATERIALS AND METHODS	31
1-Insect rearing technique	31
2-Tested materials	31
2.1- Chemical insecticides	31
2.1.1- Deltamethrin	31
2.1.2- Esfenvalerate	32
2.1.3- Chlorpyrifos	32
2.1.4- Thiodicarb	33
2.2- Bioinsecticides (<i>Bt</i> products)	33
2.2.1- Dipel 2x	33
2.2.2- Ecotech	33
2.2.3-Agerin	33
3-Bioassay and selection pressure procedures for resistance	55
to the tested insecticides	33

3.1- Deltamethrin	33
3.2- Dipel 2x	34
4- Cross resistance of the resistant strains to the tested insecticides	35
5- Biochemical studies	35
5.1- Enzyme assay	35
5.1.1-Determination of glutathione S- transferase activity	36
5.1.2-Determination of phosphatases activity (Ac-pase & Alk-	
pase)	36
5.1.3-Determination of total protein	37
5.2- Protein electrophoresis	37
6- Histological studies	38
IV. RESULTS AND DISCUSSION	39
1-Development of resistance	39
1.1- Development of resistance of pink bollworm to	
deltamethrin	39
1.2- Development of resistance of pink bollworm to	
bioinsecticide Dipel 2x	42
2- Cross resistance to certain insecticides	45
2.1- Cross resistance in deltamethrin resistant strain of	
P. gossypiella to certain insecticides	45
2.2- Cross resistance in Dipel 2x resistant strain of	
P. gossypiella to certain insecticides	52
3- Biochemical studies on resistance of <i>P. gossypiella</i>	54
3.1- Glutathione S-transferase activity	54
3.1.1-The specific activity of GST in deltamethrin.	
resistant strain	54
3.1.2- The specific activity of GST in Dipel 2x resistant	
strain	57
3.2- Phosphatases activity	59
3.2.1- Acid and alkaline phosphatases activity in	
deltamethrin resistant strain	59
3.2.2- Acid and alkaline phosphatases activity in	

4-Electrophoretic pattern	
5- Histopathological changes	
V. SUMMARY	
VI. REFERENCES	
VII. ARABIC SUMMARY	59
	64
	67
	73
	76

Dipel 2x resistant strain	59
4-Electrophoretic pattern	64
5- Histopathological changes	67
V. SUMMARY	73
VI. REFERENCES	76
VII. ARABIC SUMMARY	

INTRODUCTION

Pink bollworm *Pectinophora gossypiella* (Saund.) is primarily a mid and late season pest and one of the most serious insect pest attacking cotton crop in Egypt as well as the most cotton producing countries which cause a great damage in the quality and quantity of cotton yield.

In the early 1980's, pyrethroid insecticides were rapidly substituted for organophosphorus and organochlorine insecticides for control of the pink bollworm due to their wide spectrum, low dosage, high killing efficiency, low residue and low toxicity to humans and animals. Unfortunately, resistance by the bollworm to such insecticides became more and serious because of indiscriminate applications. (Wang 1992).

Bacillus thuringeinsis as a biopesticide is a valuable source of insecticidal proteins for use in conventional sprayable formulations, and in transgenic crops and it is the most promising alternative to synthetic insecticides (Ferre and Van Rie 2002). The benefits of using B. thuringiesis include reduced environmental and worker exposure to insecticides. reduced selection conventional for resistance conventional insecticides and improved conservation of natural enemies. However Lepidopteran resistance to B.t. has been known since 1985 but only in a few taxonomic families. Nonetheless these insects were susceptible to other Bt toxins. Resistance to B. thuringeinsis has documented for several insect species (Tabashnik 1994). Pink bollworm and more than a dozen other pests have been selected in the laboratory for resistance to *B. thuringeinsis* toxin (**Frutos** *et al.* **1999**).

Since the resistance of such pests are expected, the aim of the present work is to investigate:

- 1-The development of resistance of *P. gossypiella* to the pyrethroid deltamethrin as well as a formulation of *B. thuringeinsis* (Dipel 2x).
- 2-Cross-resistance to other insecticides in resistant strains.

- 3-Biochemical mechanism of resistance.
- 4- Histopathological changes of gut of resistant strains larvae.

LIST OF FIGURES

Fig.	Page
No.	
1-Toxicity lines of deltamethrin to the tested strains	
during selected generations of P. gossypiella	41
2-Toxicity lines of Dipel 2x to the tested strains	
during selected generations of <i>P. gossypiella</i>	44
3-Toxicity lines of esfenvalerate to the tested strains of P .	
gossypiella	47
4-Toxicity lines of chlorpyrifos to the tested strains of <i>P</i> .	
gossypiella	48
5- Toxicity lines of thiodicarb to the tested strains of <i>P</i> .	
gossypiella	49
6-Toxicity lines of Ecotech to the tested strains of P .	
gossypiella	50
7-Toxicity lines of Agerin to the tested strains of <i>P</i> .	
gossypiella	51
8-GST activity of full grown larvae of <i>P. gossypiella</i>	
in susceptible, parent and different generations of	
deltamethrin resistant strain	56
9-GST activity of full grown larvae of P. gossypiella	
in susceptible, parent and different generations of	
Dipel 2x resistant strain	56
10-Acid and alkaline phosphatases activity of full grown	
larvae of <i>P. gossypiella</i> in susceptible, parent and	
different generations of deltamethrin resistant strain	62
11-Acid and alkaline phosphatases activity of full grown	
larvae of <i>P. gossypiella</i> in susceptible, parent and	
different generations of Dipel 2x resistant strain	62

12-SDS-PAGE gel of gut protein from ful grown	
larvae of susceptible strain, G14 of Dipel 2x and G14	
of deltamethrin resistant strains of P. gossypiella	66
13-Midgut epithelium cross section of normal untreated	
4 th instar larvae of <i>P.gossypiella</i>	68
14-Midgut epithelium cross section of treated 4 th instar	
larvae with Dipel 2x	69
15-Midgut epithelium cross section of treated 4 th instar	
larvae with deltamethrin	69
16-Midgut epithelium cross section of resistant larvae fed	
on Dipel2x	70
17-Midgut epithelium cross section of resistant larvae fed	
on deltamethrin	70