

Ain Shams University Faculty of Engineering Department of Structural Engineering

Seismic Behavior of Confined Masonry Walls Retrofitted by Fiber Reinforced Polymers

A THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of MASTER OF SCIENCE IN CIVIL ENGINEERING

Submitted by

ISLAM MOHAMED MOHAMED ISMAIL MANTAWY

B.Sc. in Civil Engineering - Structural Eng.-2010 Ain Shams University – Faculty of Engineering

Supervised by

PROF. DR. AMR ALI ABDELRAHMAN

Professor of Concrete Structures Structural Engineering Department Ain Shams University

DR. HUSSEIN OSAMA OKAIL

Assistant Professor Structural Engineering Department Ain Shams University

> June 2013 Cairo-Egypt

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering (Structural Eng.)

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or qualification at any other university or institution.

Name: Islam Mohamed Mohamed Ismail Mantawy

Signature:

Date: 20-06-2013

AUTHOR

Name: Islam Mohamed Mohamed Ismail Mantawy

Date of Birth: 1 April 1988

Place of Birth: Cairo, Egypt.

Nationality: Egyptian

University Degree: B.Sc. in Civil Engineering, Faculty of

Engineering, Ain Shams University,

2010.

Current Job: Teaching Assistant at Structural

department, Faculty of Engineering, Ain

Shams University.

Ain Shams University Faculty of Engineering Department of Structural Engineering

EXAMINER'S COMMITTEE

Name: Islam Mohamed Mohamed Ismail Mantawy

Thesis: Seismic Behavior of Confined Masonry Walls

Retrofitted by Fiber Reinforced Polymers

Degree: Master of Science in Civil Engineering

Name and Affiliation	Signature
Prof. Dr. Mashhour Ahmed Ghoneim	
Professor of Concrete Structures	
Structural Engineering Department	
Cairo University	
Prof. Dr. Ezz Eldin Yazeed Ahmed	
Professor of Steel Structures	
Structural Engineering Department	
Ain Shams University	
Prof. Dr. Amr Ali Abdelrahman	
Professor of Concrete Structures	
Structural Engineering Department	
Ain Shams University	
•	

Date: 20/06/2013

ACKNOWLEDGEMENT

First of all, I thank ALLAH who guided and helped me to finish this work in the proper shape.

I would like to thank my dear supervisor **Prof. Amr Ali ABDELRAHMAN** professor of concrete structures, faculty of engineering, Ain Shams University for his experienced advice, continuous support and deep encouragement through all phases of the work

I am grateful to **Dr. Hussien Osama Okail**, Associate Professor of concrete structures, faculty of engineering, Ain Shams University, for his experienced advice, continuous support and deep encouragement through all phases of the work.

I would like to thank my father, mother and my whole family for their continuous support.

I would like to thank the technicians of the reinforced concrete laboratory, Ain Shams University

Finally, I would like to thank my dear friends and colleagues who help me in completion of this work, especially Amr Hassan Ramadan, Mostafa Metwaly and Amr Abd el Khalik

ABSTRACT

<u>TITLE</u>: "Seismic Behavior of Confined Masonry Walls Retrofitted by Fiber Reinforced Polymers"

Submitted by: Eng. Islam Mohamed Mohamed Mantawy

Supervised by :Prof.Dr. Amr Ali Abdelrahman Dr. Hussien Osama Okail

Confined masonry building is a common kind of construction found in many parts of the world. It represents one of the cheap and economic forms of construction. With the lack of codified design provisions in addition to experience base construction of such buildings, the issue of retrofitting existing confined masonry structures surface as the primary aim of the thesis at hand. The primary aim of thesis was to conduct an extensive experimental – analytical investigation of confined masonry wall assemblies retrofitted with CFRP sheets subjected to lateral loads. In this respect, the experimental phase of the research included the testing of three full-scale wall assemblies, consisting of a clay masonry panel, two confining columns and a tie beam retrofitted by CFRP under a combination of vertical load and monotonic pushover up to failure. Wall assemblies had various configurations, namely solid, perforated with window and door openings. The retrofitting scheme relied on using epoxy bonded CFRP sheets applied to untested walls in configurations tracking the principal tension fields. Experimental results showed that the wall assemblies experience a shear failure at the ends of the lightly reinforced confining elements after the failure of the diagonal struts formed in the masonry wall due to transversal diagonal tension. The application of CFRP sheets enhanced the lateral load capacity and displacement ductility significantly. Wall specimens' results were compared with unretrofittted walls tested by other researchers in the research program.

In the analytical phase of the research program, a numerical model based on nonlinear finite element analysis was developed and validated in light of the experimental program. The analytical results from the finite element analysis of both retrofitted and unretrofitted walls shows that the developed models are capable with high accuracy to capture the ultimate load and displacement capacities of the tested walls Key experimental and analytical findings indicate that using Fiber Reinforced Polymer to retrofit confined masonry walls enhance the lateral load behavior of confined masonry walls significantly. A parametric study was carried to expand results database for multiple design variations including CFRP amount, CFRP configuration, eccentric openings and opening location. By increasing the amount of Fiber Reinforcement Polymers, the lateral load capacity for both solid wall and wall with window opening as well as ultimate displacement capacity increased significantly. The increase was significantly lower for walls with door opening.

The parametric study also shed some light on different CFRP configurations that showed either economic or response merits over the experimentally tested configurations. The analyses of perforated walls with eccentric openings showed that the effect of CFRP sheets on the increase of ultimate lateral load and ultimate displacement capacities decreases as the amount of perforation in the confined panel increases. For opening location for retrofitting perforated walls, CFRP sheets showed a similar enhancement for panels with eccentric perforations when compared to concentric ones.

Keywords: Confined Masonry, Seismic Behavior, Lateral Loads, Shear Failure, Retrofitting, Composite Material, CFRP.

TABLE OF CONTENTS

CHAPTER (1)	1
INTRODUCTION	1
1.1General	1
1.2 Objectives	
1.3 SCOPE	3
1.4 THESIS LAYOUT	4
CHAPTER (2)	6
LITERATURE REVIEW	6
2.1General	
2.2System description	
2.3DAMAGE PATTERN AND OVERALL SEISMIC BEHAVIOR	.11
2.4PARAMETER EFFECTS ON PERFORMANCE OF CONFINED MASONRY UNDER	
LATERAL LOADS	
2.4.1 Confining elements	
2.4.2 Opening	
2.4.3 Masonry-concrete interface	
2.5REINFORCING, STRENGTHENING AND RETROFITTING WITH FRP	.23
2.5.1 Reinforcing, Strengthening and Retrofitting with FRP	.28
2.5.1.1 Reinforcing, Strengthening and Retrofitting with FRP Sheets or Laminates	20
2.5.1.2 Reinforcing, Strengthening and Retrofitting with CFRP Strips	.20 21
2.5.1.2 Kennolchig, Strengthening and Ketrontting with CFKF Strips	
2.6.1Effects of height of lateral forces, column reinforcement and wall	.50
reinforcements on seismic behavior of confine masonry walls.	36
2.6.2 Seismic behavior of confined masonry walls	
•	
CHAPTER (3)	.41
EXPERIMENTAL PROGRAM	.41
3.1General	.41
3.2 OBJECTIVES OF THE EXPERIMENTAL PROGRAM	
3.3DESIGN OF THE TEST SPECIMENS	
3.4MATERIAL PROPERTIES	
3.4.1 Concrete	.43
3.4.2 Steel Reinforcement	.44
3.4.3 Mortar	.45
3.4.4 Clay Masonry	.45
3.5SPECIMEN DETAILS	
3.5.1 Wall Assembly	
3.6FABRICATION OF THE TEST SPECIMENS.	
3.6.1 Fabrication of wall foundation	
3.6.2 Fabrication of wall	
3.6.3 Fabrication of confining elements	
3.7Instrumentation	
3.7.1 Steel Strains	.64

3.8.1 Loading	66
5.0.1 Educing	66
3.8.2 Supports	
3.8.3 Preparation for Testing	
3.9TESTING PROCEDURE	69
3.10Experimental Results	
3.10.1 Wall specimen (CLY-S-CTRL)	70
3.10.2 Wall specimen (CLY-P-W)	72
3.10.3 Wall specimen (CLY-P-D)	
3.11 CFRP PROPERTIES	
3.11.1 Fibers	
3.11.2 Polymers	
3.12SPECIMEN DETAILS	
3.12.1 Amount of CFRP sheets	
3.12.1.1 Retrofitted Solid Wall	80
3.12.1.2 Retrofitted Wall with Window Opening	82
3.12.1.3 Retrofitted wall with door opening	
3.12.2 Instulation of CFRP sheets	88
3.13 Instrumentation	91
CHAPTER (4)	92
EXPERIMENTAL RESULTS	92
4.1Testing Procedure.	92
4.2Experimental Results	
4.2.1 Wall Specimen (CLY-S-CFRP)	
4.2.2 Wall specimen (CLY-W-CFRP)	
4.2.3 Wall specimen (CLY-D-CFRP)	
CHAPTER (5)	
FINITE ELEMENT ANALYSIS AND PARAMETRIC STUDY	106
5.1 General	106
5 2Model Geometry	
5.2Model Geometry	108
5.3 ELEMENTS	
5.3 ELEMENTS	109
5.3 ELEMENTS	109 111
5.3 ELEMENTS	109 111 112
5.3 ELEMENTS 5.3.1 Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS 5.4.1 Concrete and Masonry Model	109 111 112 113
5.3 ELEMENTS 5.3.1 Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS 5.4.1 Concrete and Masonry Model 5.4.2 Steel Reinforcement Model	
5.3 ELEMENTS 5.3.1 Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS 5.4.1 Concrete and Masonry Model 5.4.2 Steel Reinforcement Model 5.4.3 Fiber Reinforced polymers Model	109111112113116
5.3 ELEMENTS 5.3.1 Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS 5.4.1 Concrete and Masonry Model 5.4.2 Steel Reinforcement Model	109111112113116117
5.3 ELEMENTS 5.3.1Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS 5.4.1 Concrete and Masonry Model 5.4.2 Steel Reinforcement Model 5.4.3 Fiber Reinforced polymers Model 5.5 BOUNDARY CONDITIONS	109111113116117118
5.3 ELEMENTS 5.3.1Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS 5.4.1 Concrete and Masonry Model 5.4.2 Steel Reinforcement Model 5.4.3 Fiber Reinforced polymers Model 5.5 BOUNDARY CONDITIONS 5.6 LOADING	109111113116117118118
5.3 ELEMENTS 5.3.1 Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS 5.4.1 Concrete and Masonry Model 5.4.2 Steel Reinforcement Model 5.4.3 Fiber Reinforced polymers Model 5.5 BOUNDARY CONDITIONS 5.6 LOADING 5.7 VERIFICATION	109111113116117118118119
5.3 ELEMENTS 5.3.1 Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS 5.4.1 Concrete and Masonry Model 5.4.2 Steel Reinforcement Model 5.4.3 Fiber Reinforced polymers Model 5.5 BOUNDARY CONDITIONS 5.6 LOADING 5.7 VERIFICATION 5.7.1 CLY-S-CFRP Results	109111113116117118118119120
5.3 ELEMENTS 5.3.1 Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS 5.4.1 Concrete and Masonry Model 5.4.2 Steel Reinforcement Model 5.4.3 Fiber Reinforced polymers Model 5.5 BOUNDARY CONDITIONS 5.6 LOADING 5.7 VERIFICATION 5.7.1 CLY-S-CFRP Results 5.7.2CLY-W-CFRP Results	109111113116117118119120123
5.3 ELEMENTS 5.3.1 Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS. 5.4.1 Concrete and Masonry Model 5.4.2 Steel Reinforcement Model 5.4.3 Fiber Reinforced polymers Model 5.5 BOUNDARY CONDITIONS 5.6 LOADING. 5.7 VERIFICATION 5.7.1 CLY-S-CFRP Results 5.7.2CLY-W-CFRP Results 5.7.3CLY-D-CFRP Results	109111113116117118119120123126
5.3 ELEMENTS 5.3.1 Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS. 5.4.1 Concrete and Masonry Model 5.4.2 Steel Reinforcement Model 5.4.3 Fiber Reinforced polymers Model 5.5 BOUNDARY CONDITIONS 5.6 LOADING. 5.7 VERIFICATION 5.7.1 CLY-S-CFRP Results 5.7.2 CLY-W-CFRP Results 5.7.3 CLY-D-CFRP Results 5.7.4 Validation Results 5.7.4 Validation Results 5.8 ANALYTICAL EXTENSION USING FE MODELS 5.8.1 Solid Walls	109111113116117118120123126129129
5.3 ELEMENTS 5.3.1 Assembly 5.3.2 Finite Element Meshing 5.4 MATERIAL MODELS. 5.4.1 Concrete and Masonry Model 5.4.2 Steel Reinforcement Model 5.4.3 Fiber Reinforced polymers Model 5.5 BOUNDARY CONDITIONS 5.6 LOADING. 5.7 VERIFICATION 5.7.1 CLY-S-CFRP Results 5.7.2 CLY-W-CFRP Results 5.7.3 CLY-D-CFRP Results 5.7.4 Validation Results 5.7.4 Validation Results 5.8 ANALYTICAL EXTENSION USING FE MODELS	109111113116117118120123126129129

5.8.3 Walls with Door opening	161
CHAPTER (6)	185
CONCLUSIONS AND RECOMMENDATIONS	185
6.1 SUMMARY	185
6.2 CONCLUSIONS	186
6.3 RECOMMENDATIONS FOR FUTURE WORK	

LIST OF FIGURES

Figure 2.1: (a) A completely demolished URM dwelling, (b) An intact CM building,	
2003 Bam earthquake, Iran (Eshghi and Naserasadi, 2005)	7
Figure 2.2:Main elements of confined masonry system (Blondet, 2005))
Figure 2.3: difference between confined masonry system and reinforced concrete	
frames with masonry infills (Bill McEwen 2005)10)
Figure 2.4: Illustration of the seismic behavior beyond cracking limit state	2
Figure 2.5: Post-peak behavior of a typical CM wall (Zabala, 2004)1.	3
Figure 2.6:CM house with damage concentration in the first story(a) Alcocer et	
al.2004 (b) 1997 Punitaqui earthquake, Chile (Gomez et al. 2002)14	1
Figure 2.7: Flexural failure and penetration of cracks into tie columns ends (Zabala	
et al. 2004)1	5
Figure 2.8: The beneficial effects of confinement on the seismic response of masonry	
panels (Tomazevic and Klemenc, 1997(a))10	5
Figure 2.9: Extensive damage to the column-beam joint due to improper	
reinforcement detailing, 1985 Llolleo Earthquake, Chile (Gomez et al. 2002)18	8

Figure 2.10: Constructive effect of opening confinement on post-cracking seismic performance of CM walls (Leonardo et al. 2004)	21
Figure 2.11:Extensive damage to masonry piers due to the lack of proper opening confinement, 1985 Llolleo Earthquake, Chile (Gomez et al. 2002)	
Figure 2.12: Separation of masonry walls and tie column due to the lack of proper	
bond (Yushimura et al. 2004)	
Figure 2.13: Destruction of Building [Blondet et al. 2004]	
Figure 2.14: Available Shapes of FRP Products [ISIS Design Manual No. 3 2007]	.26
Figure 2.15: Strengthening Masonry using FRP [Zhuge 2008]	
Figure 2.16: Test Setup [El-Gawady et al. 2005]	
Figure 2.17: Test Setup [Mahmood et al. 2008]	
Figure 2.18: Test Setup (left) and Spraying Polyurea to one URM	
Figure 2.19: Apparatus for Testing Panels [Marcari et al. 2007]	33
Figure 2.20: Shape and distribution of interaction forces between tie-column and masonry wall panel	30
musoni y wati panei	
Figure 3.1: Geometry details of tested unretrofitted solid clay wall	47
Figure 3.2: Geometry details of tested unretrofitted solid clay wall with window	•••
opening (Dimensions in mm)	48
Figure 3.3: Geometry details of tested unretrofitted solid clay wall with door open	
(Dimensions in mm)	
Figure 3.4: Details of wall reinforcement in the foundation (Dimensions in mm)	
Figure 3.5: Typical reinforcement cage installed into form for foundation specime	
Figure 3.6: Reinforcement cage installed into form.	
Figure 3.7: Casting process of foundation specimens	
Figure 3.9: Details of the masonry in wall (Dimensions in mm)	
Figure 3.10: Construction process of wall specimens	
Figure 3.11: Details of reinforcement in confining elements (Dimensions in mm	
Figure 3.12: Typical reinforcement cage for confining elements	
Figure 3.13: Reinforcement cage installed into form	
Figure 3.14: Curing process of wall specimens	
Figure 3.15: Measurement devices used in the tests	
Figure 3.16: Position of instrumentation scheme for solid walls (Dimensions in mr	
	 62
Figure 3.17: Position of instrumentation scheme for walls with window opening (Dimensions in mm)	62
Figure 3.18: Position of instrumentation scheme for walls with door opening	03
(Dimensions in mm)	63
Figure 3.19: Steel strain gauge attached to a steel bar, glued and water-proofed	
Figure 3.20: Steel strain gauge installed per tie column.	
Figure 3.21: Steel strain gauge attached to the bottom reinforcement of the bond	
beam	65
Figure 3.22: Load cells, LVDT's and strain gauges connected with computer system	
Figure 3.23: Axial distributed load of the wall specimen.	
Figure 3.24: concentrated lateral load applied with the axis of the bond beam	
Figure 3.25: two supports to avoid wall sliding and wall uplift	
Figure 3.26: Load-Displacement curve for wall (CLY-S-CTRL)	
Figure 3.27: Crack pattern for wall (CLY-S-CTRL)	/1

Figure 3.28: Sketch of crack pattern for wall (CLY-S-CTRL)	72
Figure 3.29: Load-Displacement curve for wall (CLY-P-W)	73
Figure 3.30: First crack at load 100 kN at a displacement of 7.43 mm (CLY-P-W)	.73
Figure 3.31: Crack pattern for wall (CLY-P-W)	
Figure 3.32: Sketch of crack pattern for wall (CLY-P-W)	
Figure 3.33: Load-Displacement curve for wall (CLY-P-D)	
Figure 3.34: Crack pattern for wall (CLY-P-D)	
Figure 3.35: Sketch of crack pattern for wall (CLY-P-D)	77
Figure 3.36: Sikadur®-330	79
Figure 3.37: STM for solid wall under 320 kN horizontal load	
Figure 3.38: Geometry details of tested retrofitted solid clay wall	
Figure 3.39: STM for wall with window opening under 250 kN horizontal load	
Figure 3.40: Tension forces at ties and their resultants around window opening	
Figure 3.41: Geometry details of tested retrofitted solid clay wall with window	07
opening (Dimensions in mm)	85
Figure 3.42: STM for wall with door opening under 170 kN horizontal load	
Figure 3.43: Geometry details of tested retrofitted solid clay wall with door opening (Primagaina in 1994)	
(Dimensions in mm)	
Figure 3.44: Configuration of CFRP sheet for retrofitted solid wall	
Figure 3.45: Configuration of CFRP sheet for retrofitted wall with window opening	
Figure~3.46:~Configuration~of~CFRP~sheet~for~retrofitted~wall~with~door~opening~.	90
E: ALL ID: I GIVE CERRING HIGHE	
Figure 4.1: Load Displacement curve for wall (CLY-S-CFRP) V.S. wall (CLY-S-	
CTRL)	
Figure 4.2: Load-Strain curve for CFRP Sheet for wall (CLY-S-CFRP)	
Figure 4.3: Crack pattern for wall (CLY-S-CFRP) at Failure	
Figure 4.4: Crack pattern for wall (CLY-S-CFRP) at lower right part	
Figure 4.5: Crack pattern for wall (CLY-S-CFRP) at upper left part	
Figure 4.6: Crack pattern for wall (CLY-S-CFRP) around CFRP Sheet	
Figure 4.7: Sketch of crack pattern for wall (CLY-S-CFRP)	96
Figure 4.8: Load Displacement curve for wall (CLY-W-CFRP) V.S. wall (CLY-P-V	
Figure 4.9: Load-Strain curve for CFRP Sheet for wall (CLY-W-CFRP)	
Figure 4.10: Crack pattern for wall (CLY-W-CFRP) at Failure	98
Figure 4.11: Debonding failure at CFRP sheet for (CLY-W-CFRP)	99
Figure 4.12: Crack pattern above window opening for (CLY-W-CFRP)	99
Figure 4.13: Crack pattern below window opening for (CLY-W-CFRP)	100
Figure 4.14: Crack pattern at corner of back side of (CLY-W-CFRP)	100
Figure 4.15: Sketch of crack pattern for wall (CLY-S-CFRP) at back face	101
Figure 4.16: Load Displacement curve for wall (CLY-D-CFRP) V.S. wall (CLY-P-	D)
Figure 4.17: Load-Strain curve for CFRP Sheet for wall (CLY-D-CFRP)	102
Figure 4.18: Crack pattern for wall (CLY-D-CFRP) at Failure	103
Figure 4.19: Crack pattern for wall segments at both sides of door opening for (C	
D-CFRP) at Failure	
Figure 4.20: Crack pattern for wall segment above door opening for (CLY-D-CFI	
at Failure	
Figure 4.21: Crack pattern between wall segment and footing for (CLY-D-CFRP)	at .
180 kN	
Figure 4.22: Sketch of crack pattern for wall (CLY-D-CFRP)	105
J 1 J	

Figure 5.1: Model for wall (CLY-S-CTRL),(CLY-P-W) and (CLY-P-D) respectively.
Eigen 5 2 Interface between magazine wall and confining allowants
Figure 5.2: Interface between masonry wall and confining elements
Figure 5.3: Model for wall (CLY-S-CFRP),(CLY-W-CFRP) and (CLY-D-CFRP)
respectively
Figure 5.4: Load-Displacement curve for (CLY-S-CFRP) for both mesh size of 40
mmand 60 mm
Figure 5.5: 3D Meshing of concrete part (3D view and cross section)
Figure 5.6: Mohr-Coulomb failure criterion
Figure 5.7: Mohr-Coulomb yield surface in meridional and deviatoric planes 116
Figure 5.8: Bilinear Behavior for Steel
Figure 5.9: Stress Strain Curve for Fiber Reinforced Polymer
Figure 5.10: Boundary condition for walls
Figure 5.11:Loading scheme for FE model
Figure 5.12: Predicated load vs. Displacement relationship compared to
corresponding experimental relationship for both (CLY-S-CTRL) and (CLY-S-CFRP).
Figure 5.13: Predicated load vs. Strain in CFRP Sheet relationship compared to
corresponding experimental relationship for (CLY-S-CFRP)
Figure 5.14: Principle stress trajectories for both (CLY-S-CTRL) and (CLY-S-
CFRP)
Figure 5.15: Principle stress trajectories in Concrete frame and masonry panal for
both (CLY-S-CTRL) and (CLY-S-CFRP)
Figure 5.16: Principle stress contours in Concrete frame and masonry panal for both
(CLY-S-CTRL) and (CLY-S-CFRP).
Figure 5.17: Deformation Shape for both (CLY-S-CTRL) and (CLY-S-CFRP) 122
Figure 5.18: Predicated load vs. Displacement relationship compared to
corresponding experimental relationship for both (CLY-P-W) and (CLY-W-CFRP-
DF-SL)
Figure 5.19: Predicated load vs. Strain in CFRP Sheet relationship compared to
corresponding experimental relationship for (CLY-W-CFRP)
Figure 5.20: Principle stress trajectories for both (CLY-P-W) and (CLY-W-CFRP).
124
Figure 5.21: Principle stress trajectories in Concrete frame and masonry panal for
both (CLY-P-W) and (CLY-W-CFRP)
Figure 5.22: Principle stress contours in Concrete frame and masonry panal for both
(CLY-P-W) and (CLY-W-CFRP)
Figure 5.23: Deformation Shape for both (CLY-P-W) and (CLY-W-CFRP) 125
Figure 5.23: Deformation Shape for both (CLI-F-w) and (CLI-w-CFRF)125 Figure 5.24: Predicated load vs. Displacement relationship compared to
corresponding experimental relationship for both (CLY-P-D) and (CLY-D-CFRP-DF-
SL)
Figure 5.25: Predicated load vs. Strain in CFRP Sheet relationship compared to
corresponding experimental relationship for (CLY-W-CFRP-DF-SL)
Figure 5.26: Principle stress trajectories for both (CLY-P-D) and (CLY-D-CFRP).
Figure 5.27: Principle stress trajectories in Concrete frame and masonry panal for
both (CLY-P-D) and (CLY-D-CFRP)
Figure 5.28: Principle stress contours in Concrete frame and masonry panal for both
(CLY-P-D) and (CLY-D-CFRP)
Figure 5.29: Deformation Shape for both (CLY-P-D) and (CLY-D-CFRP) 128

Figure 5.30: Extended Specimens Shapes for CFRP amount for solid walls 130
Figure 5.31: Predicated load vs. Displacement relationship for (CLY-S-CTRL), (CLY-
S-CFRP-DF-SL), (CLY-S-CFRP-DF-DL) and(CLY-S-CFRP-SF-SL)
Figure 5.32: Predicated load vs. Strain in CFRP Sheet relationship for(CLY-S-CFRP-
DF-SL), (CLY-S-CFRP-DF-DL) and (CLY-S-CFRP-SF-SL)
Figure 5.33: Principle stress trajectories for (CLY-S-CFRP-DF-SL), (CLY-S-CFRP-
DF-DL) and (CLY-S-CFRP-SF-SL)
Figure 5.34: Principle stress trajectories in Concrete frame and masonry panal for
(CLY-S-CFRP-DF-SL), (CLY-S-CFRP-DF-DL) and (CLY-S-CFRP-SF-SL)
Figure 5.35: Principle stress contours in Concrete frame and masonry panal for
(CLY-S-CFRP-DF-SL), (CLY-S-CFRP-DF-DL) and (CLY-S-CFRP-SF-SL)
Figure 5.36: Deformation Shape for (CLY-S-CFRP-DF-SL),(CLY-S-CFRP-DF-DL)
and (CLY-S-CFRP-SF-SL)
Figure 5.37:Extended Specimens Shapes for CFRP Configurations for solid walls. 135
Figure 5.38: Predicated load vs. Displacement relationship for (CLY-S-CFRP-DF-
SL), (CLY-S-CFRP-DF-SL-SHAPE1),(CLY-S-CFRP-DF-SL-SHAPE2) and (CLY-S-
CFRP-DF-SL-SHAPE3)
Figure 5.39: Predicated load vs. Strain in CFRP Sheet relationship for(CLY-S-CFRP-
DF-SL), (CLY-S-CFRP-DF-SL-SHAPE1),(CLY-S-CFRP-DF-SL-SHAPE2) and (CLY-
S-CFRP-DF-SL-SHAPE3)
Figure 5.40: Principle stress trajectories for (CLY-S-CFRP-DF-SL),(CLY-S-CFRP-
DF-SL-SHAPE1),(CLY-S-CFRP-DF-SL-SHAPE2)and (CLY-S-CFRP-DF-SL-
SHAPE3)
Figure 5.41: Principle stress trajectories in Concrete frame and masonry panal for
(CLY-S-CFRP-DF-SL), (CLY-S-CFRP-DF-SL-SHAPE1),(CLY-S-CFRP-DF-SL-
SHAPE2) and (CLY-S-CFRP-DF-SL-SHAPE3)
Figure 5.42: Principle stress contours in Concrete frame and masonr panal for
(CLY-S-CFRP-DF-SL), (CLY-S-CFRP-DF-SL-SHAPE1),(CLY-S-CFRP-DF-SL-
SHAPE2) and (CLY-S-CFRP-DF-SL-SHAPE3)
Figure 5.43: Deformation Shape for (CLY-S-CFRP-DF-SL), (CLY-S-CFRP-DF-SL-
SHAPE1),(CLY-S-CFRP-DF-SL-SHAPE2) and (CLY-S-CFRP-DF-SL-SHAPE3) 140
Figure 5.44: Extended Specimens Shapes for CFRP amount for walls with window
opening
Figure 5.45: Predicated load vs. Displacement relationship for (CLY-P-W),(CLY-W-
CFRP-DF-SL), (CLY-W-CFRP-DF-DL) and (CLY-W-CFRP-SF-SL)
Figure 5.46: Predicated load vs. Strain in CFRP Sheet relationship for CLY-W-
CFRP-DF-SL), (CLY-W-CFRP-DF-DL) and T(CLY-W-CFRP-SF-SL)
CFRP-DF-DL) and (CLY-W-CFRP-SF-SL)
Figure 5.48: Principle stress trajectories in Concrete frame and masonry panal for
(CLY-W-CFRP-DF-SL), (CLY-W-CFRP-DF-DL) and (CLY-W-CFRP-SF-SL) 144
Figure 5.49: Principle stress contours in Concrete frame and masonry panal for
(CLY-W-CFRP-DF-SL), (CLY-W-CFRP-DF-DL) and (CLY-W-CFRP-SF-SL) 144
Figure 5.50: Deformation Shape for (CLY-W-CFRP-DF-SL), (CLY-W-CFRP-DF-
DL) and (CLY-W-CFRP-SF-SL)

Figure 5.54. Drive in Lastraga trainstantia for (CLV W. CERR DE SL.) (CLV W. CERR
Figure 5.54: Principle stress trajectories for (CLY-W-CFRP-DF-SL), (CLY-W-CFRP-SE SL SHAPEL)
SF-SL-SHAPE1)
Figure 5.55: Principle stress trajectories in Concrete frame and masonry panal for (CLY-W-CFRP-DF-SL), (CLY-W-CFRP-SF-SL-SHAPE1)149
Figure 5.56: Principle stress contours in Concrete frame and masonry panal for
(CLY-W-CFRP-DF-SL), (CLY-W-CFRP-SF-SL-SHAPE1)
Figure 5.57: Deformation Shape for (CLY-W-CFRP-DF-SL), (CLY-W-CFRP-SF-SL-
SHAPE1)
Figure 5.58: Extended Specimens Shapes for Eccentric opening for walls with window
opening
Figure 5.59: Predicated load vs. Displacement relationship for walls with eccentric
window opening
Figure 5.60: Predicated load vs. Strain in CFRP Sheet for walls with eccentric
window opening
Figure 5.61: Principle stress trajectories for walls with eccentric window opening.
Figure 5.62: : Principle stress trajectories in Concrete frame and masonry panal for
walls with eccentric window opening
Figure 5.63: Principle stress contours in Concrete frame and masonry panal for
walls with eccentric window opening
Figure 5.64: Deformation Shape for walls with eccentric window opening156
Figure 5.65: Extended Specimens Shapes for opening location for walls with window
opening157
Figure 5.66: Predicated load vs. Displacement relationship for opening location for
walls with window opening
Figure 5.67: Predicated load vs. Strain in CFRP Sheet relationship for opening
location for walls with window opening
Figure 5.68: Principle stress trajectories for opening location for walls with window
opening
Figure 5.69: Principle stress trajectories for opening location for walls with window
opening
Figure 5.70: Principle stress contours in Concrete frame and masonry panal for
opening location for walls with window opening
Figure 5. 71: Deformation shapes for opening location for walls with window
opening
Figure 5.72: Extended Specimens Shapes for CFRP amount for walls with door
opening
Figure 5.73: Predicated load vs. Displacement relationship for (CLY-P-D),(CLY-D-
CFRP-DF-SL), (CLY-D-CFRP-DF-DL) and (CLY-D-CFRP-SF-SL)
Figure 5.74: Predicated load vs. Strain in CFRP Sheet relationship for CLY-D-
CFRP-DF-SL), (CLY-D-CFRP-DF-DL) and (CLY-D-CFRP-SF-SL)164
Figure 5.75: Principle stress trajectories for (CLY-D-CFRP-DF-SL), (CLY-D-CFRP-
DF-DL) and (CLY-D-CFRP-SF-SL)
Figure 5.76: Principle stress trajectories in Concrete frame and masonry panal for
(CLY-D-CFRP-DF-SL), (CLY-D-CFRP-DF-DL)and(CLY-D-CFRP-SF-SL)
Figure 5.77: Principle stress contours in Concrete frame and masonry panal for
(CLY-D-CFRP-DF-SL), (CLY-D-CFRP-DF-DL) and (CLY-D-CFRP-SF-SL) 165
Figure 5.78: Deformation Shape for (CLY-D-CFRP-DF-SL), (CLY-D-CFRP-DF-DL)
and (CLY-D-CFRP-SF-SL)
Figure 5.79: Extended Specimens Shapes for CFRP Configuration for walls with door
opening