

Impact of Human Leukocyte antigen (HLA) typing on the outcome of Hepatitis C Virus (HCV) infection in Egyptian patients

Thesis submitted for M.Sc. Degree as a partial fulfilment for requirments of the master in Science (Microbiology)

By

Mai Mohamed El-Sayed Lotfy

(B.Sc. Microbiology Department, Ain Shams University 2007)

Supervisors

Prof. Dr. Ahmed Barakat Barakat

Professor of Virology, Microbiology Department, Faculty of Science, Ain Shams University.

Prof. Dr. Abd El-Rahman N. Zekri

Professor of Virology and Immunology, Cancer Biology Department, National Cancer Institute, Cairo University.

Prof. Dr. Ashraf Omar Abd El-Azeez

Professor of Tropical Medicine, Faculty of Medicine, Cairo University.

Microbiology Department, Faculty of Science, Ain Shams University. 2016

Approval sheet

Title of Thesis: "Impact of Human Leukocyte antigen (HLA) typing on the outcome of Hepatitis C Virus (HCV) infection in Egyptian patients."

Degree: M.SC. In Microbiology

Name of students: Mai Mohamed El-Sayed Lotfy

This Thesis for M.SC degree has been approved by:

<u>Supervisors</u> <u>Approved</u>

Prof. Dr. Ahmed Barakat Barakat

Virology, Microbiology Department, Faculty of Science, Ain Shams University.

Prof. Dr. Abd El-Rahman N. Zekri

Virology and Immunology, Cancer Biology Department, National Cancer Institute, Cairo University.

Prof. Dr. Ashraf Omar Abd El-Azeez

University Council approved / /

Tropical Medicine, Faculty of Medicine, Cairo University.

Examination committee:

Prof. Dr. Ahmed Barakat Barakat	Prof. of Virology, Microbiology
	Department, Faculty of Science, Ain
	Shams University.
Prof. Dr. Abd El-Rahman N. Zekri	Prof. of Virology and Immunology,
	Cancer Biology Department, National
	Cancer Institute, Cairo University.
Prof. Dr. Nabila Anwer El Sheikh	Prof. of Immunology, Faculty of
	Medicine for Girls, Al Azhar University.
Prof. Dr. Mohamed Ahmed Aly	Prof. of Virology, National Research
	Center.
Date of examination / /	Approval date / /
Faculty Council approved /	/

بسم اللَّهِ الرَّحْمَنِ الرَّحِيم قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ صدق الله العظيم { البقرة آيه: 32}

Declaration

I certify that the thesis titled "Impact of Human leukocyte antigen (HLA) Typing on the Outcome of Hepatitis C Virus (HCV) Infection in Egyptian patients" is my own work. The work has not been presented elsewhere for assessment. Where material has been used from other sources it has been properly acknowledged / referred.

Signed

Mai Mohamed El-Sayed Lotfy

LIST OF CONTENTS —

Acknowledgment	
Abstract	I
List of abbreviations	III
List of figures	VII
List of tables	VIII
1. Chapter I: Introduction and aim of work	1
2. Chapter II: Review of literature	8
Part I: Hepatitis C virus	
2.1 Discovery of Hepatitis C virus (HCV)	8
2.2 HCV Structure and genomic organization	9
2.2.1 HCV structure	9
2.2.2 HCV genome organization	11
2.3 Genotypes and worldwide distribution	13
2.3.1 HCV genotypes	13
2.3.2 HCV genotypes distribution	14
2.4 Transmission of HCV infection	15
2.5 HCV Epidemiology	17
2.5.1 HCV global prevalence	18
2.5.2 HCV prevalence in Egypt	19
2.6 Natural History of HCV infection	21
2.6.1 Hepatic manifestations of HCV infection	22
2.6.1.1 Acute hepatitis C	22
2.6.1.2 Chronic hepatitis C	23
2.6.1.3 Hepatocellular carcinoma	24
2.6.2 Extra hepatic manifestations of HCV infection	26
2.7 Serological and Molecular diagnosis of HCV infection	27
2.7.1 Serological diagnosis of HCV infection	27
2.7.1.1 HCV antibody assays (EIAs)	28
2.7.2. Molecular diagnosis of HCV infection	29
2.7.2.1 Qualitative tests	30

LIST OF CONTENTS —

2.7.2.2 Quantitative tests	30
2.8 Treatment of Hepatitis C (antiviral therapies)	31
Part II: Human leukocyte Antigen (HLA)	
2.9 Definition	36
2.10 History	36
2.11 Genomic map of HLA genes	38
2.11.1 HLA class I	39
2.11.2 HLA class II	40
2.11.3 HLA class III	41
2.12 HLA Nomenclature	42
2.13 HLA Structure	45
2.13.1 HLA class I structure	45
2.13.2 HLA class II structure	46
2.14 HLA-peptide interaction	48
2.14.1 HLA class I-peptide interaction	49
2.14.2 HLA class II-peptide interaction	49
2.15 HLA Polymorphism	50
2.16 HLA Function	51
2.16.1 HLA class I antigen processing and presentation	52
2.16.2 HLA class II antigen processing and presentation	53
Part III: Role of HLA in innate and adaptive cellular immune response versus HCV infection.	
2.17 Innate cellular immune response to HCV infection	55
2.18 Bridging innate and adaptive immunity	59
2.19 Adaptive cellular immune responses in HCV infection	60
2.20 Evasion of the Immune System by HCV	64
3. Chapter III: Patients and methods	68
3.1. Inclusion criteria of the participants	68
3.2. Exclusion criteria of the participants	
3.3. Assigned groups of the included patients	
3.4. The laboratory investigations of the selected patients	71

LIST OF CONTENTS —

3.5. Other investigations of the selected patients	
3.6. Sample collection and preparation	
3.6.1 Sample collection	72
3.6.2 Sample preparation	73
3.6.2.1 Viral RNA extraction	73
3.6.2.2 Genomic DNA extraction	73
3.7 HLA typing by SSO for the selected patients	73
3.7.1 Principle	73
3.7.2 Materials	74
3.7.2.1 Reagents	74
3.7.2.2 Other materials	75
3.7.2.3 Instrument requirements	76
3.7.3 HLA typing Procedure	77
3.8 Statistical analysis	83
4. Chapter IV: Results	84
4.1. Demographic and clinical data of the studied participant	84
4.2. Laboratory data of the studied participants	87
4.3. HLA typing analysis	93
5. Chapter V: Discussion	109
6. Chapter VI: Summary and conclusion	118
7. Chapter VII: References	125
Arabic summary	

Acknowledgment

First of all, thanks to **GOD** for his grace and mercy, and for giving me the effort to complete this work.

Completing a M.Sc. is a marathon event, and I would not have been able to complete this journey without the aid and support of countless people over the past five years. I must first express my gratitude towards my advisor, Professor Abel-Rahman Zekri. His leadership, support, attention to detail and hard work have set an example I hope to match some day. Thanks for always being a father before being a teacher.

I would additionally like to thank Prof. Ahmed Barakat for his support in both the research and especially the revision process that has lead to this document. His knowledge and understanding of the written word has allowed me to fully express the concepts behind this research.

I also extend my thanks and appreciation to **Prof. Ashraf Omar**, he gave me much of his time and experience. His valuable comments were the causes to complete this work properly.

I would like to thank my loved ones, who have supported me throughout entire process, both by keeping me harmonious and helping me putting pieces together. I will be grateful forever for your love.

Finally, I thank my adorable parents for instilling in me confidence, love, support and a drive for pursuing my M.Sc.

Abstract

Abstract:

Hepatitis C (HCV) is the most pressing public health challenge in Egypt; 10% of Egyptians between 15 – 59 years of age had been infected with HCV infection, while 7% are chronic active hepatitis C patients. Although, progresses were made in antiviral therapies; this cannot ensure controlling the virus infection due to many reasons one of which is the lack of HCV vaccine. Achievement of this goal will be fulfilled from a clear understanding of virus—host interactions and protective immunity in HCV infection taking in consideration the ethnic and geographical variations. This preliminary study was designed aiming to find out the frequencies of HLA Class I and II alleles in HCV infected Egyptian patients for assessing the correlations between HLA phenotypes and the consequences of HCV infection.

Two hundreds and eighty two HCV subjects were enrolled in the present study and they were categorized into 7 groups; Group1: Spontaneous clearance (SC: n=37), Group 2: Asymptomatic HCV infection (AS: n=40), Group 3: Chronically infected HCV patients (CHCm: n= 86 with no, mild or moderate fibrosis); Group 4: Chronically infected HCV patients (CHCa: n=12 with advanced fibrosis); Group 5: Cirrhotic liver disease either compensated or decompensated (LC: n=42), Group 6:

Hepatocellular Carcinoma patients (**HCC**: n=40), Group 7: Healthy Controls (**N**: n=25). HLA alleles were typed by DNA based Typing method "LABType® sequence-specific oligonucleotide (SSO) probes" for HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQ (A and B) alleles from peripheral blood of all participants.

The results of this work implicate that special HLA patterns were found; *HLA-DRB1*03*, *-DRB1*14* antigen may play a role in viral persistence. While, *HLA-C*05*, *-DRB1*11*, *-DQA1*05* and *-DQB1*03* is associated with viral clearance. In conclusion, HLA system is an ideal system in which to explore predictions on the outcome of HCV infections in Egyptians' gene pool. These data support the critical role of the critical role of some HLA alleles of class I and II that consequently confirm that successful clearance of HCV infection requires strong CD4+ and CD8+ T cell responses. Also, the data generated from our study may help clinicians to predict the treatment outcome for HCV- seropositive individuals in Egypt. Further investigations in this regard with larger number of HCV patients are recommended.

Keywords: HLA, MHC, Hepatitis C virus, Egyptian patients

LIST OF ABBREVIATIONS

AFP: Alpha Feto Protein

ALT: Alanine aminotransferase

APC: Antigen Presenting Cells

AST: Aspartate aminotransferase

bDNA: branched DNA Assay

C: Core protein

CDC: Centers for Disease Control and Prevention

Centromeric

CHC: Chronic hepatitis C

CLIP: Class II-associated Invariant Chain Peptide

CTL: Cytotoxic T Lymphocytes

DAAs: Directly Acting Antivirals

DCs: Dendritic Cells

DNA: Deoxyribonucleic Acid

dsRNA: double strand RiboNucliec Acid

E: Envelope Glycoproteins

EIA: Enzyme Immunoassay

ELISA: Enzyme linked immunosorbent assay

EM: Electron Microscopy
EOT: End of Treatment

ER: Endoplasmic Reticulum

eRVR: Extended Rapid Virological Response

ETR: End of Treatment Response

EVR: Early Virological Response

FDA: Food and Drug Administration

GAG: Glycosaminoglycans

GWAS: Genome Wide Association Studies

LIST OF ABBREVIATIONS

HAV: Hepatitis A virus

HCC: Hepatocellular Carcinoma

HCV: Hepatitis C virus

HIV: Human Immunodeficiency Virus

HLA: Human Leukocyte Antigen

HSPs: Heat-Shock Proteins

HVR: Hypervariable Region

IDU: Injecting Drug Use

IFN: Interferon

Ii: Invariant Chain

IL: Interleukin

INR: International Normalized Ratio of prothrombin time of

blood coagulation

IRES: Internal Ribosome Entry Site

IRF: IFN Regulatory Factors

ISGs: Interferon Stimulated Genes

IU: International Unit

KB: Kilobase

KDa: Kilodalton

KIR: Killer cell Immunoglobulin like Receptors

LDL: Low-Density Lipoproteins

LDL-R: Low-Density Lipoproteins Receptor

LMP: Low-Molecular-weight Proteins

MAVS: Mitochondrial Antiviral Signaling

MHC: Major Histocompatibility Complex

mRNA: Messenger RNA

NAT: Nucleic acid Testing

LIST OF ABBREVIATIONS

NHANES: Health and Nutrition Examination Study

NK: Natural Killer Cells

NR: IFN Non Responders

NS: Non Structural Proteins

NTRs: Non-translated Regions

OD: Optical Density

ORF: Open Reading Frame

PAMPs: Pathogen Associated Molecular Patterns

PCR: Polymerase Chain Reaction

PCT: Porphyria Cutanea Tarda

PEG-IFN α : Pegylated interferone- α

PKR: Protein-Kinase R

pMHC: peptide-MHC Complex

PRRs: Pattern Recognition Receptors

RBV: Ribavirin

RdRp: RNA-dependent RNA polymerase

RGT: Response Guided Therapy

RIBA: Recombinant Immunoblot Antibody Assay

RIG-I: Retinoic-acid-Inducible Gene I

RNA: Ribonucleic Acid

RT-PCR: Reverse transcription polymerase chain reaction

RVR: Rapid Virological Response

SR-BI: Scavenger Receptor class B type I

SVR: Sustained Virological Response

TAP: Transporter Associated with Antigen- Processing

TCR: T Cell Receptor

Tel: Telomeric

Th: T Helper cells

LIST OF ABBREVIATIONS -

TLR: Toll Like Receptors

TMA: Transcription-Mediated Amplification

TNF: Tumor Necrosis Factor

Tregs: Regulatory T cells

UTR: Untranslated Region

WHO: World Health Organization