IMMUNOLOGICAL STUDIES ON VACCINATION OF CATTLE WITH STRAIN RB51 AND STRAIN 19

A Thesis presented

by

Khalid Abdel Samei Abou Gazia

B. V. Sc. Alexandria University, 1994

M. V. Sc. Alexandria University, 2000

For

The degree of Ph.D. in Veterinary Science (Microbiology)

To

Department of Microbiology
Faculty of Veterinary Medicine
Alexandria University

(2005)

Under the supervision of

Prof. Dr.

Helmy Ahmed Torky

Professor of Microbiology
Faculty of veterinary medicine
Alexandria University

Prof.Dr.

Mohamed Hosam El-Din Refaie Kotb

Professor of Microbiology

Head of Reproductive diseases Research department

Animal Reproduction Research Institute

Acknowledgements

First of all my prayerful gratitude should be submitted to the merciful **ALLAH** whose help I always seek, and without his willing, I will achieve nothing.

I am sincerely grateful to Prof. Dr. Helmy Ahmed Torky, Professor of Microbiology, Faculty Veterinary Medicine, Alexandria University, for his supervision, scientific guidance, valuable advices and continuous encouragement throughout the study.

I would like to express my sincere gratitude to Prof. Dr. Mohamed Hossam El-Din Refai Kottb, Head of Reproductive diseases Research Department, Animal Reproduction Research Institute (ARRI) for his kind supervision, valuable advices, and unlimited help.

I'm also grateful to Prof.Dr. **Ibrahim Gad A**. **Ibrahim**, Head of Research, Reproductive diseases Research Department, ARRI, for his helpful advice and encouragement.

My deep cordial thanks **Dr.Mohamed Abdel Maksoud** Naval Medical Research Unit (NAMRU3) for his valuable help in the practice of PCR.

Finally, my greatest appreciation to all staff members of Microbiology Dept., Faculty Veterinary Medicine, Alexandria University and Reproductive diseases Research Dep., ARRI for their kind encouragement.

List of abbreviations

Anti A Monospecific Antisera Brucella abortus

Anti M Monospecific Antisera Brucella melitensis

B. abortus Brucella abortus

B. melitensis Brucella melitensis

bp Base Pair

BSA Bovine Serum Albumin

CFU Colony Forming Unit

DNase Deoxyribonuclease

EDTA Ethyelene-Diamine-Tetra acetic Acid

ELISA Enzyme Linked Immunosorbant Assay

Mol. W. Molecular Weight

MRT Milk Ring Test

O.D. Optical Density

PBS Phosphate Buffer Saline

PBST Phosphate Buffer Saline + Tween 80

RBPT Rose Bengal Plate Test

RT Rivanol Test

S 19 Brucella abortus strain 19

S/B Spleen weigh / Body weight

SAT Standard Tube Agglutination Test

RB51 Brucella abortus strain RB51

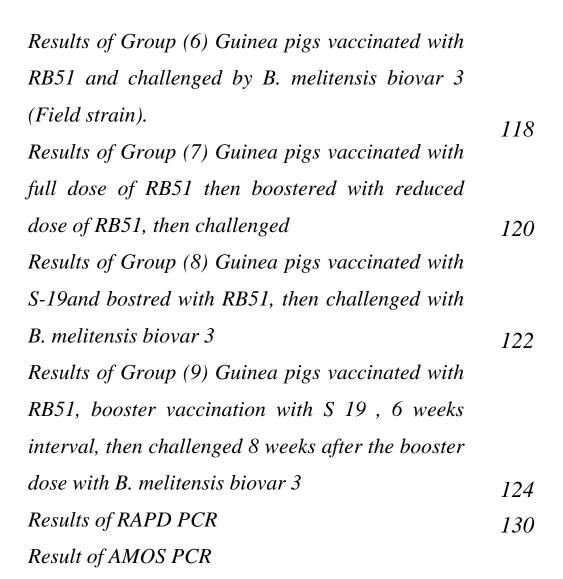
TBS Tris + Buffer Saline

TBST TBS + Tween

List of contents

Subject	Page number
1-Introduction	1
2-Review of literature	4
2-1- Historical overview of Brucellosis	6
2-2-General Characteristics	7
2-3-The incidence of Brucellosis in Egypt	15
2-4-Characteristics of ideal Vaccine for	
prevention of Brucella infection	17
2-5- Brucella abortus strain 19 (S19)	19
2-5- Brucella abortus strainRB51	21
2-6-Immune response to strain 19 Vaccine	22
2-7- Immune response to strainRB51vaccne	24
2-8-Comparative studies between RB51and	
S-19 vaccin (Safety and immune response)	30
2-9- Serological diagnosis of brucellosis	38
2-10- Guinea pigs as experimental animal for	
Brucellosis	41
2-11-Polymerase Chain Reaction (PCR)	
3-Mtrial and methods	51
3-1- Martial	51
3-1-1- animals	52
3-1-2-Experimental animals	53
3-1-3-Brucella vaccines	53
3-1-4-Brucella antigens	54

3-1-5-Monospecific antisera	54
3-1-6-Culture media	54
3-1-7-Chemicals and reagents	56
3-1-8-Inhibitors for setective media	56
3-1-9- Dyes for sensitivity test media	57
3-1-10-Diluents and buffers	57
3-1-11-Stains	57
3-1-12Requirements for Dot-ELISA	
3-1-13- Apparatuses	59
3-1-14- Reagents used for DNA extraction	59
3-1-15- Reagents and equipments used for	61
Polymerase Chain Reaction (PCR)	
3-1-16- Chemicals and equipment used for	63
electrophoresis	
5-Methods	65
3-2-1- Collection of samples	65
3-2-2- Serological tests	66
3-2-2-1-RoseBengal test	66
3-2-2-2Standard tube agglutination test (SAT)	68
3-2-2-3-Revional test (RT)	69
3-2-2-4-EDTA modified SAT	70
3-2-2-5-Milkringtest (MRT)	71
3-2-3- Isolation and identification of Brucella	71
microorganism by culture of specimen	, -
3-2-4-Colony blot (Dott blot ELISA) using	76
enzyme linked immuno -sorbant method	
3-2-5- Challenge test	78
3-2-6- Molecular Biology (PCR)	79
3-2-6-1Preparation of genomicDNA from Brucella	79
3-2-6-2- DNA amplification by PCR	81
3-2-6-3- RAPD by PCR6-2-6-3- Identification of	81
PCR product	
4- Result	82
4-1- Results of field study	83
4-2- Serological examination	83
O .	


4-2-1- Results of infected non vaccinated herds	85
4-2-1-1- Results of recently- brucella infected non	85
vaccinated herds	
4-2-1-2- Results of chronically - brucellosis	87
infected non vaccinated herds	
4-2-2- Results of vaccinated herds with S 19	89
4-2-2-1–Results of non-infected vaccinated herds with S19	89
4-2-2–2-Results of infected herds vaccinated with S 19	91
4-2-3– Results of herds vaccinated with RB51	93
4-2-3–1- Results of non-infected herds vaccinated with RB51	93
4-2-3–2- Results of infected herds vaccinated with RB51	95
4-2-4- Results of infected cattle herds that calf-	97
hood was vaccinated with S 19 then adult was re-vaccinated with RB51	
4-3 Bacterological Examination	104
4-4- Results of Challenge tests	105
Evaluation of Vaccination with RB51 & S 19 in	103
Guinea pigs	
4-4-1- Results of group (1) Guinea pigs vaccinated	105
with RB51 (Not challenged)	103
4-4-2- Results of group (2) Guinea pigs not, and infected with B. melitensis biovar 3 field strain	107
o o	109
4-4-2- Results of group (2) Guinea pigs vaccinated with S.19, and challenged with B. abortus field	109
strain	
4-4-4- Results of group (4) Guinea pigs vaccinated	111
with S.19 and challenged by B. melitensis field	
strain	
4-4-5- Results of group (5) Guinea pigs, vaccinated with RB51 and challenged with B.	113
abortus field strain	
4-4-6- Results of group (6) Guinea pigs vaccinated	115
with RB51 and challenged with B. melitensis	- 2

(local field strain)	
4-4-7- Results of group (7) Guinea pigs vaccinated	117
with first full dose of RB51, then re-vaccinated 6	
weeks later with reduced dose RB51 (booster	
dose) then challenged with B. melitensis field	
strain	
4-4-8 Results of group (8) Guinea pigs vaccinated	119
with S.19, then re-vaccinated with RB51 and	
challenged with B. melitensis field strain	
4-4-9- Results of group (9) Guinea pigs vaccinated	121
with RB51, then re-vaccinated S.19 (booster dose)	
then challenged with B. melitensis (field strain)	
4-5-Results of PCR	123
4-5-1- Results of RAPD PCR	123
4-5-2 Results of AMOS PCR.	125
	138
5-Discussion	
6-Summary	149
7-References	153
8-Arabic Summary	194

List of Tables

Table	Page number
Tested cattle herds.	51
Sequence of oligonucleotide primers used for RAPD amplification	62
Sequence of oligonucleotide primers for AMOS-PCR	62
Conversion of B. abortus Serum Agglutination Test to International unit (IU/ml) [Hendery et al. 1985].	67
Interpretation of SAT reaction	69
Differentiation and characteristics of species of the genus Brucella and their biotypes	75
Characteristics distinguishing live vaccine B.abortus S	76
groups of guinea pigs in challenge test	78
19 from B.abortus biovar 1 strains	
Classification of farms with regard to history of	84
brucellosis & vaccination status .	
Results of recently infected non vaccinated herds:	86
Results of Chronically infected non-vaccinated	88

herds	00
Results of Non-infected herds vaccinated with S 19	90 92
Results of Infected herds vaccinated with S 19	
Results of Non-infected herds vaccinated with	94
RB51	96
Results of Infected herds vaccinated with RB51	98
Results of Infected herd that Calf-hood vaccinated	
with S-19 then adult vaccinated with RB51	99
Comparison between different herds.	104
Bacterological Examination of Aborted faeti &	
milk samples	106
Results of Group (1) Guinea pigs vaccinated with	100
RB51.(No Challenge)	108
Results of Group (2) Guinea pigs non-vaccinated	
and infected by B. melitensis biovar 3 (Field	
strain).	110
Results of Group (3) Guinea pigs vaccinated with	110
S-19 and challenged by B. abortus biovar 1 (Field	
strain).	112
Results of Group (4) Guinea pigs vaccinated with	112
S 19 and challenged by B. melitensis biovar 3	
(Field strain).	114
Results of Group (5) Guinea pigs vaccinated with	114
RB51 and challenged by B. abortus biovar 1	
(Field strain).	116

List of Figures

Figure	Page number
Comparison between results of RBPT of different herds	100
Comparison between results of SAT of different herds.	101
Comparison between results of Milk Ring Test of different herds.	102
Comparison between numbers of aborted feoti in different herds	103
Result of RAPD PCR test Brucella Vaccines S 19 & RB 51 using Mix. of set primers. Results of AMOS- PCR1	124
Results of AMOS- PCR2	126
The identification of each Lane band concerning	127
the RAPD amplification	128
Electerophoretic pattern of RAPD PCR test	
Brucella Vaccines S 19 & RB 51 using Mix. of set primers.	128
Electrophoretic pattern of Hae III Marker.	128
Electrophoretic pattern of S 19 in RAPD I.	129
Electrophoretic pattern of RB 51 in RAPD I.	129
Electrophoretic pattern of S 19 in RAPD II.	129
Electrophoretic pattern of RB 51 in RAPD II.	130
Electrophoretic pattern of S 19 in RAPD III.	130
Electrophoretic pattern of RB 51 in RAPD III.	130

The identification of each lane band concerning	131
the AMOS PCR amplifriction.	
Results of AMOS- PCR	131
Electrophoretic pattern of PCR test of Brucella	132
strains using Mix. Of set primers	
Electrophoretic pattern of PCR of molecular	132
weight DNA marker	
Electrophoretic pattern of PCR of Brucella	132
abrtus(reference strain)	
Electrophoretic pattern of PCR of Brucella	132
melitensis(reference strain)	
Electrophoretic pattern of PCR of Brucella suis	133
(reference strain)	
Electrophoretic pattern of PCR of local isolate of	133
Brucella melitensis	
Electrophoretic pattern of PCR of local isolate of	134
Brucella melitensis	
Electrophoretic pattern of PCR of local isolate of	134
Brucella melitensis	
Electrophoretic pattern of PCR of local isolate of	134
Brucella melitensis	
Electrophoretic pattern of PCR of local isolate of	135
Brucella melitensis	
Electrophoretic pattern of PCR of Strain 19	135
Electrophoretic pattern of PCR of RB 51	135
Brucella abortus strain RB 51 stained with	136
modified Z. N. stain.	
Brucella abortus strain 19 stained with modified	136
Z. N. stain.	
Milk ring test (MRT)	137
Macroscopical changes of guinea pig spleen.	137
Dott blot ELISA of brucella culture plate	138

Introduction

1

Animal Brucellosis is a disease affecting various domestic and wild life species. Six species of Brucella exist which are associated with several principle host; *B. abortus* (cattle), *B. melitensis* (goat), *B. canis* (dogs), *B. suis* (swine), *B. ovis* (sheep) and *B. neotomae* (desert rats)(Stoenner and Lackman 1957). Recently, Brucella infected sea mammals (**Ross**, **1996**).

Several Brucella species can infect human causing a zoonotic disease called 'undulant fever' that associated with headache, night sweet, arthritis and bone deformities (Young, 1983). 500,000 people were found to be infected every year (OIE 2001). Human brucellosis is a worldwide public health concern especially in undeveloped countries where brucellosis in cattle continuos to be a wide spread zoonotic problem (Matyes and Fujikura, 1984).

Bovine brucellosis is an economically important abortifacient disease in cattle caused mainly by *B. abortus* (Winkler, 1982). Vaccination of female calves wit *B. abortus* strain 19 (S 19) has been used worldwide to prevent the disease in cattle. S 19 is live, attenuated vaccines which result in variable levels of protection, depending on incidence of the disease (Nicoletti, 1990). In some countries, S 19 has been used to vaccinate adult cattle to increase the immunity in herds with high risk of brucellosis (Nicoletti, 1990).

It is interest that S 19 vaccinations, cattle naturally infected with B. abortus field strains develop antibodies against the O-chain surface antigen of the lipopolysaccharide (LPS) and this is used to diagnose the disease (**Diaz et al., 1968**).

S 19 calfhood vaccination induces antibodies of similar specificity; these antibodies vanish quickly in most animals but can persist in some cases (Nicoletti, 1990). Revaccination gives better immunity, but the problem of seroconversion following revaccination adult with S 19 outweighed the benefits (McDiarmid, 1957). A major objective in research on bovine brucellosis is development of live vaccine that will induce protection against infection and abortion. In addition, the new vaccine should induce antibody responses that can be differentiated from responses induced by virulent field strains of Brucella in the standard serological tests now used for the presence of antibodies. Testing of modified strains of *B. abortus* for use in vaccines requires time-consuming and expensive challenge experiments in pregnant cattle. Protection, measured as reduced placental infection and abortion, is difficult to demonstrate, and acceptable quantitation requires large number of cows (Deyoe, 1980).

Recently, Schurig and his coworkers produce a stable rough variant of *B. abortus 2308* that was designated RB51 (**Schurig et al., 1991**).

Strain RB51 had diminished virulence in comparison with strain 2308 and S 19 (Samartino and Enright, 1992) and did not induce the formation LPS-specific antibodies (Schurig et al., 1994 and Cheville et al., 1992). These phenomena suggest that SRB51 might be better than S 19 as a vaccine in cattle because RB51 induces immunity without inducing serologic response to LPS that are detected by diagnostic tests for brucellosis. Therefore, the RB51 vaccine may enable more efficient serological identification and removal of cattle with brucellosis from the vaccinated herds. The stability and vaccine efficacy of *B. abortus* RB51