MEDICAL TREATMENT OF CHOROIDAL NEOVASCULAR MEMBRANE

Essay
Submitted for partial fulfillment of
M. Sc. degree in Ophthalmology

 $\begin{array}{c} By \\ \textbf{Lamyaa Abd El Rahman Farghaly} \\ \text{M. B. B, Ch.} \end{array}$

Supervised by

Prof. Dr. Hamed Abd El Hamid Rabie

Professor of Ophthalmology Faculty of Medicine Ain Shams University

Dr. Tarek Ahmed El Mamoun

Assistant Professor of Ophthalmology Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University

ACKNOWLEDGMENT

Praise to ALLAH who gave me everything, keep me guided and who allowed this work to be done.

It is indeed an honor to me to be supervised by Prof. Dr. Hamed Abd El Hamid Rabie, Professor of Ophthalmology, Ain Shams University, who was really so supportive & helpful to me in this study. I am deeply affected by his noble, character, perfections, care and consideration. To him I owe much more than I can express.

Words stand short to express my respect and thanks to Dr. Tarek Ahmad El Mamoun, Assistant Professor of Ophthalmology, Ain Shams University, for his constant encouragement, scientific guidance, and helpful supervision, which were the cornerstone for this work and helped me to overcome many difficulties.

Lastly, I cannot find enough words to thank my parents, my family, and all my professors for their endless support.

Lamyaa Abd El Rahman

LIST OF CONTENTS

Title	Page No.
List of Figures	i
List of Abbreviations	iii
Introduction	1
Aim of the work	٣٣
Review of Literature:	
• Introduction to choroidal neovascular membrane	ξ
Pathogenesis of CNV	۲٥
Medical treatment of CNV	٤١
Verteporfin photodynamic therapy	٧١
Combination treatment of CNV	٧٦
Summary	۸۲
References	ለ٦
Arabic Summary	

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (\):	Abnormal leaking new blood vessels	٤٤
Figure (۲):	Disciform subretinal scarring	٥
Figure (~):	FA of patient presented with classic CNV lesion	1١٢
Figure (٤):	Late phase FA of minimally classic CNV	۱۳
Figure (0):	Early and late phases FA of occult CNV	١٣
Figure (٦):	Subfoveal type I fibrovascular PED.	۱٤
Figure (∀):	FA of fibrovascular PED	۱٤
Figure (\wedge):	ICG of a fibrovascular PED	
Figure (9):	FA in the early phase reveals a subfovea	l,
	classic, well-defined CNV	
Figure (\ ·):	OCT showing hyperreflective area resemble	es .
	CNV	
Figure (\\):	OCT finding in a case of predominately classi	
	CNV	
Figure (17):		
	fibrovascular PED and cystoid macular edema.	
Figure (\T):	Central vision affection in CNV	
Figure (\Σ):	Normal and distorted Amsler grid	
Figure (10):	Subretinal hemorrhage in CNV	
Figure (17):	Pathological myopia associated with subfovea	
	CNV	
Figure (\V):	Angioid streaks accompanied with CNV	
Figure ($\land \land$):	CNV in OHS	
Figure (19):	Rupture choroid.	
Figure (7 ·):	The cascade of events associated wit	
	angiogenesis	۲۰
Figure (71):	Soft drusens preceding the formation of CNV	
Figure (۲۲):	The concept of CNV.	
Figure (۲۲):	VEGF isoforms.	
Figure (Υ٤):	VEGF receptors.	
Figure (70):	Schematic of VEGF binding to VEGFR-7	
Figure (۲٦):	Light microscopic images of immunohistor	
	chemistry with anti-VEGF antibodies.	
Figure (7V):	Chemical structure of pegaptanib Sodium	٤٣

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
	Intravitreal injection of pegaptanib sodium	
	Effect of bevacizumab on macular thickness	
Figure $(\Upsilon \cdot)$:	Binding sites of pegaptanib sodium and	
	ranibizumab.	
Figure (Υ 1):	Bevacizumab and ranibizumab molecular	
	structure.	
Figure (TT):	FA in a patient enrolled in ANCHOR study	
Figure (TT):	Left eye OCT response of patient enrolled in the	
	study	١٥
Figure (Υ٤):	RNA interference as triggered by siRNA	٥٣
Figure (۲۵):	Mode of action of PKC inhibitors in inhibition	
	of CNV	
Figure (٣٦):	Schematic representation of human TrpRS	
	variants	
Figure (~V):	Sustained release intravitreal fluocinolone	
	acetonide implant.	
Figure ($\Upsilon\Lambda$):	Endophthalmitis	
	PJD of anecortave acetate	
• , ,	Effect of PEDF on CNV in experimental	
	animals	
Figure (Σ\):	Verteporfin PDT therapy	
Figure (ΣΥ):		
- igui e (= :):	verteporfin	
Figure (ΣΥ):	FA of a patient presented with occult CNV	٧٥
	FA of a patient presented with hemorrhage due	
1 igui 6 (22).	to CNV underwent combined PDT and	
	intravitreal TAA	
Eiduno (Sa).	Subjects losing fewer than \o letters at one year	
	in the ANCOR and FOCUS studies	

LIST OF ABBREVIATIONS

a-FGF: Acidic fibroblast growth factor.

AMD: Age-related macular degeneration.

ANCHOR: ANti-VEGF antibody for the treatment of predominantly

classic CHORoidal neovascular membrane in age related

macular degeneration study.

Ang: Angiopoietin.

ARM: Age related maculopathy.

ATP: Adenosine tri-phosphate.

b-FGF: basic fibroblast growth factor.

cm²: centimeter square.

CME: Cystoid macular edema.

CNV: Choroidal neovascular membrane.

CRT: Central retinal thickness.

DR: Diabetic retinopathy.

ETDRS: Early Treatment of Diabetic Retinopathy Study.

FA: Fluorescein angiography.

FAZ: Foveal avascular zone.

FDA: Food and Drug Administration.

FGF: Fibroblast growth factor.

GLD: Greatest linear dimension.

FOCUS: recombinant humanized Fragment of antibody VY in

Ocular treatment Combining the Use of

visudyne to evaluate Safety.

HDL: High density lipoprotein.

ICAM-\: Intra cellular adhesive molecule-\.

LIST OF ABBREVIATIONS (Cont..)

ICG: Indocyanine green angiography.

IgG: Immunoglobulin G.
IOP: Intraocular pressure.

J: Joule.

kD: kilo Daltons.

kg: kilogram.

m²: meter square.

MARINA: Minimally classical/ occult trial of the Anti VEGF

antibody Ranibizumab In the treatment of Neovascular

age related macular degeneration.

MCP: Monocyte chemoattractant protein.

mg: milligram.
ml: milliliter.
mm: millimeter.

MMPs: Matrix metalloproteinases.

MPS: Macular photocoagulation study group.

m-RNA: messenger ribonucleic acid.

mw: mill watt.
ng: nanogram.
nm: nanometer.

NOS: Nitric oxide synthetase.

NV: Neovascularization.

OCT: Optical coherence tomography.

OHS: Ocular histoplasmosis syndrome.

LIST OF ABBREVIATIONS (Cont..)

ONL: Outer nuclear layer.

PAI: Plasminogen activator inhibitor.

PDGF: Platelet derived growth factor.

PDT: Photodynamic therapy

PED: Pigment epithelial detachment.

PEDF: Pigment epithelial derived growth factor.

PJD: Posterior juxtascleral delivery.

PKC: Protein kinase C.

RD: Retinal detachment.

RISC: Ribonucleic acid induced silencing complex.

RNA: Ribonucleic acid.

ROP: Retinopathy of prematurity.

RPE: Retinal pigment epithelium.

SANA: Systemic Avastin for Neovascular age related macular

degeneration trial.

si RNA: small interfering ribonucleic acid.

TAA: triamcinolone acetonide.

TGF: Transforming growth factor.

TIMP: Tissue inhibitors of metalloproteinase.

TSP-1: Thrombospondin-1.

TNF-α: Tumor necrosis factor alpha.

TrpRS: Tryptophenyl ribonucleic acid synthetase.

μg: microgram.μm: micrometer.VA: Visual acuity.

VEGF: Vascular endothelial growth factor.

VEGFR: Vascular endothelial growth factor receptor.

VISION: VEGF Inhibition Study In Ocular Neovascularization.

INTRODUCTION

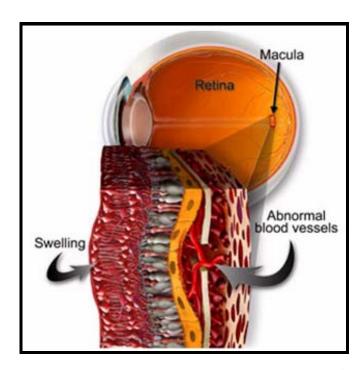
The eye contains highly vascularised and completely avascular tissues in close apposition. This specialized anatomy requires tight regulation of the balance between vascular quiescence and vascular growth. Growth normally occurs in ocular embryonic development, but is virtually absent from the eye in adult life. In eye diseases associated with angiogenesis, this delicate balance is disturbed. (1)

Angiogenesis is a tightly controlled process, which involves both endothelial cells and pericytes, and is influenced by numerous agonist growth factors principally vascular endothelial growth factor [VEGF] and inhibiting factors. (*)

Angiogenesis plays a crucial role in pathogenesis of choroidal neovascular membrane [CNV]. CNV alters the anatomy of the retina through proliferation of new capillaries and enhancement of vascular permeability leading to profound visual loss when it grows under the central part of the retina. (T)

Researches prompted for medical treatment of CNV based on inhibition of VEGF by aptamers, monoclonal antibodies, and prevention of synthesis and secretion of VEGF by small interfering RNA [si RNA]. Other new modalities in treatment of CNV through modulation of the permeability and adhesion of choroidal endothelial cells by steroids, and inhibition of angiogenesis by endogenous angiogenesis inhibitors like pigment epithelia derived factor [PEDF] and extracellular matrix modulators. (6, 6, 7)

١


Photodynamic therapy [PDT] is a tissue selective treatment that has demonstrated benefit in patients with subfoveal classic CNV. It is a minimally invasive procedure that can be performed on an outpatient basis. This treatment does not produce a blind spot on the retina. It reduces damage to normal surrounding tissue and allows the treatment to be given again as needed. Recently there has been considerable enthusiasm for potential beneficial effect associated with the use of intravitreal triamcinolone acetonide combined with verteporfin PDT. (Y, A)

AIM OF THE WORK

A im of this work is to review the new modalities of medical treatment of choroidal neovascular membrane.

INTRODUCTION TO CHOROIDAL NEOVASCULAR MEMBRANE

horoidal neovascular membrane [CNV] denotes the pathologic growth of new blood vessels from pre-existing choroidal vessels into the subretinal space (fig. \(\)). The newly formed vessels lay between the choroid and the retinal pigment epithelium [RPE] or between the native RPE and the neurosensory retina; thus, CNV also referred to as subretinal neovascularization [NV]. (\(\))

Figure ('): Abnormal leaking new blood vessels. (')

The importance of CNV is that it is the determinant of the disciform process (fig. ⁷). The disc-shaped subretinal fibrovascular membrane ultimately progress to cicatrisation and

loss of macular function, which results in rapid progressive decline of vision over a period of (7-17) months. (5)

Figure (*): Disciform subretinal scarring appearing as a white fibrotic scar in a patient with end stage CNV. (\)

The loss of vision is due to proliferation of new capillaries accompanied by secondary fibrosis and disorganization of the RPE and outer retina (it is somewhat gradual process). Alternatively, secondary alternations in both retinal capillaries and RPE lead to accumulation of serous or serosanguineous fluid beneath RPE, neurosensory retina or within the retina it self and are associated with more active visual dysfunction. (**)

A wide range of disorders that affect the integrity of the RPE-Bruch's membrane-choriocapillaris complex result in the development of CNV, a classification of known conditions associated with CNV include (17):

- **I.** *Degenerative conditions:* age-related macular degeneration [AMD], myopic degeneration, angiod streaks.
- **II.** *Inflammatory or infectious conditions:* ocular histoplasmosis syndrome [OHS], rubella, toxoplasma retinochoroiditis, sympathetic ophthalmia, tuberculosis.
- **III.** *Trauma:* choroidal rupture, laser photocoagulation, operating microscopic burn, retinal cryo injury, subretinal fluid drainage, metallic intraocular foreign body.

IV. Idiopathic

- V. *Choroidal tumors:* malignant melanoma, choroidal nevus, metastatic choroidal tumors, optic glioma.
- **VI.** *Heredodegenerative (rare):* vitelliform macular dystrophy, optic nerve drusen.