

Ain Shams University University College for Women (Arts, Science and Education) Cairo, A.R.E. Zoology Department

## THE EFFECT OF TWO ANTICANCER DRUGS, SINGLY AND COMBINED, ON THE HISTOLOGY, HISTOCHEMISTRY AND ULTRASTRUCTURE OF THE KIDNEY OF ALBINO RAT

A Thesis Submitted
For
(Ph.D.) Degree in Zoology

By

#### Hala Fahmy Abd-Ellah Sayed

(B. Sc. & M. Sc.)
Assistant Lecturer, Department of Zoology,
Girls' College for Arts, Science & Education,
Ain Shams University

# Supervised By

#### Prof. Dr. Fatma Mohamed Mazhar

Prof. of Vertebrates & Embryology,
Department of Zoology,
Girls' College for Arts, Science & Education,
Ain Shams University

Prof. Dr. Amina Mohamed Farag-Allah

Prof. of Cytology & Histology,
Department of Zoology,
Girls' College for Arts, Science & Education,
Ain Shams University

Prof. Dr. Elham Ibrahim Seif

Prof. of Pathology & Head of (ASUSH), Electron Microscope Center, Faculty of Medicine, Ain Shams University

#### 2005

# **QUALIFICATIONS**

Name : Hala Fahmy Abd-Ellah Sayed.

**Scientific Degree** : M. Sc.

**Department** : Zoology.

**College** : College for Women

(Arts, Science and Education).

**University** : Ain Shams.

**Graduation year** : 1989.

### APPROVAL SHEET

Name : Hala Fahmy Abd-Ellah Sayed.

**Title**: The Effect of Two Anticancer Drugs, Singly

and Combined, on the Histology, Histochemistry and Ultrastructure of the

Kidney of Albino Rat.

Scientific Degree: Ph.D.

**Supervisors:** 

Prof. Dr. Fatma Mohamed Mazhar

Prof. of Zoology,

Department of Zoology,

College for Women (Arts, Science and Education),

Ain Shams University

Prof. Dr. Amina Mohamed Farag-Allah

Prof. of Cell Biology & Histology,

Department of Zoology,

College for Women (Arts, Science and Education),

Ain Shams University

Prof. Dr. Elham Ibrahim Seif

Prof. of Pathology & Head of (ASUSH),

Electron Microscope Centre,

Faculty of Medicine, Ain Shams University

#### **ABSTRACT**

Cisplatin and doxorubicin are two important antineoplastic agents which are widely used in the treatment of several human tumours. However, clinical application of these drugs has been limited by their undesirable systemic toxicity.

The present study was designed to investigate the effect of cisplatin and doxorubicin, singly and combined, on clinical picture and renal structure of adult male albino rats.

The therapeutic dose of both cisplatin and doxorubicin for rats was calculated to be equal to 10 mg/kg body weight. Eighty male rats were divided into eight groups, 10 rats each, and treated as follows: [1] Control rats being received a single intraperitoneal injection of distilled water. [2]Control rats being received intraperitoneal injections of distilled water weekly for 4 consecutive weeks. [3] Rats treated with a single therapeutic dose of cisplatin (10 mg/kg b.wt.). [4] Rats treated with 1/4 the therapeutic dose of cisplatin (2.5 mg/kg b.wt.) weekly for 4 consecutive weeks. [5] Rats treated with a single therapeutic dose of doxorubicin (10 mg/kg b.wt.). [6] Rats treated with 1/4 the therapeutic dose of doxorubicin (2.5 mg/kg b.wt.) weekly for 4 consecutive weeks. [7] Rats treated with a single dose of 1/2 the therapeutic dose of both cisplatin (5 mg/kg b.wt.) and doxorubicin (5 mg/kg b.wt.). [8] Rats treated with 1/8 the therapeutic dose of both drugs (1.25 mg/kg b.wt.) weekly for 4 consecutive weeks. Rats that received single doses (groups 1, 3, 5 & 7) were sacrificed one week later, while rats treated with divided doses weekly for 4 consecutive weeks (groups 2, 4, 6 & 8) were sacrificed one week after the last injection.

The results of the present study reveal that all rats treated with cisplatin or/and doxorubicin showed clinical abnormalities and histological, histochemical, and ultrastructural renal changes. In general, the alterations were less intense in rats receiving undivided doses of the two drugs together and also in rats receiving each drug alone in weekly divided doses. Whereas, the alterations were markedly less intense in rats receiving the two drugs together in weekly divided doses.

## **ACKNOWLEDGEMENTS**

First and foremost grateful thanks to "ALLAH" the most beneficent and merciful.

To Prof. Fatma Mohamed Mazhar, Professor of Zoology, Department of Zoology and ex-Dean of College for Women, Ain Shams University, I would like to express my sincere thanks and deepest gratitude for suggesting the topic of research and for her professional reading and revision of this thesis. I greatly appreciate her meticulous guidance, emotional support and valuable time she sacrificed to me. I will never be able to express my feeling toward her with simple word, and I wish to be able one day to return to her a part of what she offered to me.

Words are not enough to reply **Prof. Dr. Amina** Mohamed Farag-Allah, Professor of Cell Biology & Histology, Department of Zoology, College for Women, Ain Shams University, for suggesting the problem of this study and for her great efforts in planning the practical work, interpretation of pathological findings, and for the critical reading and revision of all the details of the manuscript. Her scientific merit, deep experience, and constant support leading to completion of this thesis.

I am especially indebted to **Prof. Dr. Elham Ibrahim Seif,** Professor of Pathology, Faculty of Medicine, Ain Shams University and Head of "ASUSH" Electron Microscope Centre, for her generous supervision, great scientific help, constructive comments, kind co-operation, participation in revising the whole work, and for giving me so much attention and time. To her I shall be forever grateful.

Great thanks are devoted to **Dr. Nadia Raghib Ali,** Lecturer of Zoology, Electron Microscope Centre, Ain Shams University Specialized Hospital, for her kind help in taking the electron micrographs.

I owe a heavy debt of gratitude to my brother **Dr.**Mohamed Fahmy Abd-Ellah, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, for getting a lot of the references used in this dissertation from the libraries of the British universities.

I would like also to extend my deepest appreciation to all the staff members of Zoology Department, College for Women, Ain Shams University.

Finally, deep thanks to the members of my family, particularly my husband, for their continuous encouragement during my life and also to soul of my father.

# **CONTENTS**

|                                         | Page |
|-----------------------------------------|------|
| LIST OF ABBREVIATIONS                   | V    |
| LIST OF TABLES                          | vii  |
| LIST OF FIGURES                         | viii |
| I- INTRODUCTION AND AIM OF THE WORK     | 1    |
| II- LITERATURE REVIEW                   |      |
| 1- Cisplatin                            | 6    |
| 2- Doxorubicin                          | 25   |
| 3- Combination Chemotherapy             | 41   |
| III- MATERIAL AND METHODS               |      |
| A- Material                             | 47   |
| - Drugs                                 | 47   |
| - Experimental Animals                  | 51   |
| B- Methods                              | 51   |
| - Dosages and Administration            | 51   |
| - Experimental Design                   | 51   |
| - Clinical Studies                      | 53   |
| 1- External symptoms                    | 53   |
| 2- Mortality rate                       | 53   |
| 3- Body weight                          | 54   |
| 4- Gross anatomy of kidney and relative |      |
| kidney weight                           | 54   |
| - Microscopical Studies                 | 55   |
| 1- Light microscopical preparations     | 55   |
| a- Histological techniques              | 55   |
| b- Histochemcial technique              | 57   |
| 2- Electron microscopical preparations  | 59   |
| - Statistical Analysis                  | 61   |

|                                        | Page |
|----------------------------------------|------|
| IV- RESULTS                            |      |
| 1- Clinical Findings                   | 63   |
| A- External symptoms                   | 63   |
| i- Control groups                      | 63   |
| ii- Cisplatin-treated groups           | 63   |
| iii-Doxorubicin-treated groups         | 63   |
| iv-Combined cisplatin and doxorubicin- |      |
| treated groups                         | 64   |
| B- Mortality rate                      | 64   |
| i- Control groups                      | 64   |
| ii- Cisplatin-treated groups           | 64   |
| iii-Doxorubicin-treated groups         | 65   |
| iv-Combined cisplatin and doxorubicin- |      |
| treated groups                         | 65   |
| C- Body weight                         | 68   |
| i- Control groups                      | 68   |
| ii- Cisplatin-treated groups           | 68   |
| iii-Doxorubicin-treated groups         | 68   |
| iv-Combined cisplatin and doxorubicin- |      |
| treated groups                         | 69   |
| D- Gross anatomy of the kidney         | 72   |
| i- Control groups                      | 72   |
| ii- Cisplatin-treated groups           | 72   |
| iii-Doxorubicin-treated groups         | 72   |
| iv-Combined cisplatin and doxorubicin- |      |
| treated groups                         | 72   |
| E- Relative kidney weight              | 73   |
| i- Control groups                      | 73   |
| ii- Cisplatin-treated groups           | 73   |

|                                                | Page |
|------------------------------------------------|------|
| iii-Doxorubicin-treated groups                 | 73   |
| iv-Combined cisplatin and doxorubicin-         |      |
| treated groups                                 | 74   |
| 2- Microscopical Studies of the Kidney         | 77   |
| i- Control groups                              | 77   |
| - Light microscopical structure of control     |      |
| rat kidney                                     | 77   |
| - Electron microscopical structure of          |      |
| control rat kidney                             | 103  |
| ii- Cisplatin-treated groups                   | 123  |
| - Animals treated with a single therapeutic    |      |
| dose of cisplatin and sacrificed one week      |      |
| later                                          | 123  |
| - Animals treated with 1/4 the therapeutic     |      |
| dose of cisplatin weekly for 4 consecutive     |      |
| weeks and sacrificed one week after the        |      |
| last injection                                 | 159  |
| iii- Doxorubicin-treated groups                | 198  |
| - Animals treated with a single therapeutic    |      |
| dose of doxorubicin and sacrificed one         |      |
| week later                                     | 198  |
| - Animals treated with 1/4 the therapeutic     |      |
| dose of doxorubicin weekly for 4               |      |
| consecutive weeks and sacrificed one           |      |
| week after the last injection                  | 235  |
| iv- Combined cisplatin and doxorubicin treated |      |
| groups                                         | 272  |
| - Animals treated with a single dose of 1/2    |      |
| the therapeutic of both cisplatin and          |      |

|                                            | Page |
|--------------------------------------------|------|
| doxorubicin and sacrificed one week        |      |
| later                                      | 272  |
| - Animals treated with 1/8 the therapeutic |      |
| dose of both cisplatin and doxorubicin     |      |
| weekly for 4 consecutive weeks and         |      |
| sacrificed one week after the last         |      |
| injection                                  | 290  |
| V- DISCUSSION AND CONCLUSION               | 310  |
| VI- SUMMARY                                | 342  |
| VII- REFERENCES                            | 354  |
| VIII- ARABIC SUMMARY                       |      |

### LIST OF ABBREVIATIONS

BB Brush border

BC Bowman's capsule
BI Basal infoldings
CL Capillary lumen

CP Cisplatin

CT Collecting tubule

CX Cortex

DCT Distal convoluted tubule

DOX Doxorubicin

DST Distal straight tubule

E Endothelium

En Endothelial cell

F Filaments
G Glomerulus

GBM Glomerular basement membrane H & E Haematoxylin and Eosin (stain)

HC Heterochromatini.p. Intraperitoneali.v. Intravenous

IC Inflammatory cells

L Lumen

Ly LysosomesM MitochondriaMC Mesangial cell

MD Medulla

MM Mesangial matrix

Mv Microvilli

N Nucleus

PAS Periodic acid Schiff (stain)

PCT Proximal convoluted tubule

PEp Parietal epithelial cell

PST Proximal straight tubule

RBC Red blood cell
RC Renal capsule

SER Smooth endoplasmic reticulum

SFP Secondary foot processesT Thin limb of Henle's loop

TBM Tubular basement membrane

Th Thick ascending limb of Henle's loop

US Urinary space

V Vacuole

VEp Visceral epithelial cell

Vs Vesicles

# LIST OF TABLES

| No. | Title                                                                                                  | Page |
|-----|--------------------------------------------------------------------------------------------------------|------|
| 1   | Mortality rate of control and treated groups                                                           | 66   |
| 2   | Mean body weight (g) and change in body weight (%) of control and treated groups (values are mean +SD) | 70   |
|     |                                                                                                        |      |
| 3   | Average kidney weight: body weight (%) of control and treated groups (values are mean <u>+</u> SD)     | 75   |

# LIST OF FIGURES

| No.   | Title                                                                                                                                                                           | Page |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1     | Platinum-DNA adducts                                                                                                                                                            | 9    |
| 2     | Enzymatic pathways for detoxification of superoxide and hydrogen peroxide to water                                                                                              | 28   |
| 3     | Mortality rate of control and treated groups                                                                                                                                    | 67   |
| 4     | Mean change in body weight (%) of control and treated groups                                                                                                                    | 71   |
| 5     | Average kidney weight: body weight (%) of control and treated groups                                                                                                            | 76   |
| 6     | Semidiagrammatic representation of a unilobar kidney                                                                                                                            | 83   |
| 7     | Schematic drawing of the nephron                                                                                                                                                | 83   |
| 8-17  | Light micrograph sections of control rat kidneys                                                                                                                                | 85   |
| 18-24 | Electron micrographs of ultrathin sections of control rat kidneys                                                                                                               | 109  |
| 25-37 | Light micrographs of kidney sections of rats treated with a single therapeutic dose of cisplatin and sacrificed one week later                                                  | 127  |
| 38-47 | Electron micrographs of ultrathin sections of kidneys of rats treated with a single therapeutic dose of cisplatin and sacrificed one week later                                 | 143  |
| 48-62 | Light micrographs of kidney sections of rats treated with 1/4 the therapeutic dose of cisplatin weekly for 4 consecutive weeks and sacrificed one week after the last injection | 162  |