

Some Social, Environmental and Laboratory Determinants in Newborns with Necrotizing Enterocolitis

Thesis
Submitted for fulfillment of Ph.D.
in Childhood Studies - Medical Studies Department
(Child Health and Nutrition)

By

Mona Monis Zaki Risk M.B. B.Ch., M.Sc. (Pediatrics)

Supervised By

Prof. Dr. Ismail Sadek Ismail Prof Dr. Mostafa Abd-El Aziz El-Hodhod

Prof. of Pediatrics Faculty of Medicine Ain Shams University

Prof. of Pediatrics Faculty of Medicine Ain Shams University

Dr. Karim Yehia Shaheen

Dr. Rehab Abd-El Kader Mahmoud

Assist. Professor of Clinical Pathology Faculty of Medicine Ain Shams University Assist. Professor in Medical Studies Department Institute of Childhood Studies Ain Shams University

TABLE OF CONTENTS

contents	page
List of Tables	i
List of Figures	ν
List of Plates	vi
INTRODUCTION	1
AIM OF THE WORK	5
REVIEW OF LITERATURE	7
Chapter (I): Necrotizing Enterocolitis	7
Definition	7
Epidemiology	7
Risk factors	9
Pathogenesis:	14
Clinical Presentation	24
Diagnosis	27
Differential Diagnosis	31
Prevention	32
Treatment strategies for NEC	36
Potential complications	49
Mortality & Morbidity	50
Chapter (II): Oxygen Free Radicals	51
Definition	51
Types	51
Sources of Oxygen Free Radicals	59
Lipid peroxidation	64
Mechanisms of Free Radicals in Pathological States	69

contents	page
Chapter (III): Antioxidants	73
Definition	73
Mechanism of action of antioxidants	73
Classification of antioxidants	75
Antioxidant Enzyme Systems	77
Superoxide Dismutase	77
Glutathione Peroxidase	87
Catalse	95
Non-enzzymatic Antioxidants	97
Lipid-soulble antioxidants	98
Vitamine E	98
Carotenoids	100
Quinones	101
Bilirubin	101
Water-soluble antioxidants	102
Vitamin C	102
Glutathione	104
Uric acid	105
Taurine	106
Metal binding proteins	106
Binding proteins for heme and heme-proteins	108
SUBJECTS & METHODS	111
RESULTS	129
DISCUSSION	177
CONCLUSION	201
RECOMMENDATIONS	203
SUMMARY	205
REFERENCES	211
APPENDIX	275
ARABIC SUMMARY	1

Acknowledgement

I would like to express my sincere thanks and appreciation to **Prof. Dr. Ismail Sadek Ismail**, Professor of Pediatrics, Faculty of Medicine, Ain-Shams University, for his magnificent encouragement and useful comments throughout this study.

I wish to express my deepest gratitude to **Prof. Dr. Mostafa**Abd El-Aziz El-Hodhod, Professor of Pediatrics, Faculty of
Medicine, Ain-Shams University, who kindly offered much of his
time for providing me with precious guidance, which is beyond
acknowledgment. I wish to thank him for his cardinal support
during planning and throughout this study.

I would like to express my sincere thanks to **Prof. Dr. Karim Yehia Shaheen**, Assist. Professor of Clinical Pathology, Faculty of Medicine, Ain-Shams University, who offered me much of his time and experience with helpful advice. I record my appreciation to his Nobel character.

I express my deepest gratitude to **Prof. Dr. Rehab Abd El-Kader Mahmoud**, Assist. Professor in Medical studies Department, Institute of Childhood Studies, Ain-Shams University, who offered me much of her guidance. She provided me great help, generous and proper support, suggestions throughout this work.

I should also express my deep gratitude to all the staff members, my colleagues and to every person in the NICU Department, Children's Hospital, Ain-Shams University, for their continuous support, cooperation and help.

Mona Monis

LIST OF ABREVIATIONS

 $C\bar{l}$ Chloride Ion

 $OC\overline{L}$ Hypochlorous Anion

 O_2^{\bullet} Singlet Oxygen

 O_2^{\bullet} Superoxide Radical

 $ONO\overline{O}$ Peroxynitrite

C D Clostridium Defficile

C=C Carbon-Carbon Double Bond

CCS Copper Chaperone for Superoxide Dismutase

Cu/Zn SOD Copper Zinc Superoxide Dismutase

ECMO Extracorporal Membrane Oxygenation

ecSOD Extracellular SOD

EGA Estimated Gestational Age

ELISA Enzyme-linked Immunosorbant Assay

ET Endotracheal Tube

ETEC Enterotoxigenic E. coli

FHM Fortified Human Milk

G-CSF Granulocyte Colony-Stimulating Factor

GPX Glutathione Peroxidase

GSH Glutathione

GSSG Oxidized Glutathione

GSSG-R Glutathione Reductase

H/R Hypoxia Reoxygenation

HCT% Hematocrit Percentage

HDP Hydroperoxide

HNE Hydroxide Alkenals (4-hydroxy-nonenal)

HOCL Hypochlouric Acid

I/R Ischemia/ Reperfusion

IL Interleukin

L• Carbon Radical

LH Target PUFA

LOH Fatty Acid Alcohol

LOO Lipid Peroxyl Radical

LOOH Lipid Hydroperoxide

LOOL Lipid Alkoxyl

MAOIs Monamine Oxidase Inhibitors

MCH Mean Corpulscular Hemoglobin

MCHC Mean Corpulscular Hemoglobin

Concentration

MCV Mean Corpuscular Volume

MDA Malondialdehyde

Mn SOD Manganese Superoxide Dismutase

NEC Nectrotizing Enterocolitis

NO Nitric Oxide

NO₂ Nitrogen dioxide

NOS⁻² Nitric Oxide Synthase

NPO Nulla Per Os

NTYR Nitrotyrosine

O=O Oxygen – Oxygen Double Bond

OFR Oxygen Free Radicals

OH• Hydroxyl Radical

ONOOH Peroxynitrous Acid

PAF Platelet Activating Factor

PAV Postero-Anterior View

Plase A₂ Phospholipase A₂

Plase A_2 Phospholipase A_2

PLOOH Phospholipid Hydroperoxide

PLOOH Phospholipid Hydroperoxides

PO Per Os

PPM Part per million

PROM Premature Rupture of Membranes

PUFA Poly-Unsaturated Fatty Acids

R Initiating Radical

RO• Alkoxyl Radical

ROO Peroxyl Radical

ROS Reactive Oxygen Species

SCFAs Short Chain Fatty Acids

SIADH Syndrome of Inappropriate ADH

Sig. Significant

sIgA Secretory Immunoglobulin A

SOD Superoxide Dismutase

TGFβ Transforming Growth Factor Beta

TLC Total Leukocytic Count

TNFα Tumor Necrosis Factor alpha

T-O Tocopherol radical

T-OH The Phenolic Hydroxyl Gr. of Tocopherol

TXA2 Thromboxane A2

TXB2 Thromboxane B2

UQ Ubiguinone

UQH₂ Reduced Ubiguinone

VLBW Very Low Birth Weight

XO Xanthine Oxidase

LIST OF TABLES

Comtents	page
Table (1): Biochemical mediators in NEC	23
Table (2): Modified Bell Staging Criteria for Necrotizing Enterocolitis	26
Table (3): Medications used in NEC with their dose, contraindications, interactions, and precautions	42
Table (4): The most important antioxidants of human biology	75
Table (5): Antioxidant roles of ascorbic acid	103
Table (6): Comparison of important related points in the history, in both groups under study	129
Table (7a): Frequency distribution of antenatal data among both patients and control groups	130
Table (7b): Comparison of antenatal data among both patients and control groups	130
Table (8a): Frequency distribution of natal data among both patients and control groups	134
Table (8b): Comparison of natal data among both patients and control groups	135
Table (9a): Frequency distribution of post-natal data among both patients and control groups	137
Table (9b): Comparison of post-natal data among both patients and control groups	139
Table (10): Comparison of mean quantitative hematologic parameters, in both groups under study	141

Comtents	page
Table (11): Comparison of mean quantitative chemical parameters and	143
arterial blood gases, in both groups under study	
Table (12): Comparison of mean quantitative enzymatic parameters, in	144
both groups under study	
Table (13): Correlation between SOD and various clinical & laboratory	145
parameters, among patients with NEC	
Table (14): Correlation between GPX and various clinical & laboratory	147
parameters, among patients with NEC	
Table (15): Comparison of mean I/T ratio, and CRP levels, among all	150
patients under study, according to gender	
Table (16): Comparison among patients regarding mean value of	150
bodyweight according to singlet or multiple delivery	
Table (17): Comparison among patients regarding mean value og GA	151
according to prolonged second stage of labour	131
Table (18): Comparison of mean RBCs, Hb and HCT levels, among all	152
patients under study, according to polycythemia	132
Table (19): Comparison among patients regarding mean values of pH and	152
TLC according to Apnea	132
Table (20): Comparison of mean levels of I/T Ratio, and CRP, among all	153
patients under study according to bloody stools	100
Table (21): Comparison of mean levels of enzymatic parameters among all	154
patients under study according to bloody stools	10.
Table (22): Comparison of mean levels of I/T Ratio and CRP among all	155
patients under study according to bowel sounds	
Table (23): Comparison of mean levels of enzymatic parameters among all	155
patients under study according to bowel sounds	
Table (24): Comparison of mean levels of enzymatic parameters, among	156
all patients under study according to Pneumatosis intestinalis (X-ray	
findings)	

Comtents	page
Table (25): Comparison of important related points in the history in group	158
I (Stage I) and group II (Stage II) under study.	100
Table (26): Comparison of important related points in the history, in group	159
II (Stage II), and group III (Stage III) under study.	
Table (27): Comparison of important related points in the history, in group	160
I (Stage I), and group III (Stage III) under study.	
Table (28): Comparison of mean quantitative hematologic parameters, in	161
group I (Stage I), and group II (Stage II) under study.	101
Table (29): Comparison of mean levels of hematologic parameters in	162
group II (Stage II), and group III (Stage III) under study.	102
Table (30): Comparison of mean levels of hematologic parameters in	163
group I (Stage I), and group III (Stage III) under study.	100
Table (31): Comparison of mean values of chemical parameters and	167
arterial blood gases, in group I (Stage I), and group II (Stage II) under	
study.	
Table (32): Comparison of mean values of chemical parameters and	168
arterial blood gases, in group II (Stage II), and group III (Stage III) under	
study.	
Table (33): Comparison of mean values of chemical parameters and	169
arterial blood gases, in group I (Stage I), and group III (Stage III) under	
study.	
Table (34): Comparison of mean levels of enzymatic parameter, in group I	170
(Stage I), and group II (Stage II) under study.	
Table (35): Comparison of mean levels of enzymatic parameter, in group II	170
(Stage II), and group III (Stage III) under study.	•
Table (36): Comparison of mean levels of enzymatic parameter, in group I	170
(Stage I), and group III (Stage III) under study.	

LIST OF FIGURES

Contents	Page
Fig. (1): Proposed pathways in the pathogenesis of necrotizing	
enterocolitis	15
Fig. (2): Superoxide and peroxide metabolism	56
Fig. (3): Summary of mechanisms of free radicals in pathological	70
states	
Fig. (4): Causes and consequences of tissue damage	71
Fig. (5): Glutathione metabolism- GSH Redox cycle	89
Fig. (6): Socio-economic- status in patients and control groups under	132
study	
Fig. (7): Maternal Problems among patients group	133
Fig. (8): Comparison of mesn quantitive enzymatic parameter, in both	144
groups under study	
Fig. (9): Correlation between SOD and Band Cell Ratio	146
Fig. (10): Correlation between GPX and TCL	148
Fig. (11): Mean platelets count (x1000/ mm ³) among the groups under	164
study	
Fig. (12): Mean I/T Ratio (% x0.01) among the groups under study	165
Fig. (13): Mean CRP (ng/ ml) among the groups under Study	166
Fig. (14): Mean SOD (u/ ml x100) among the groups under study	171
Fig. (15): Mean GPX (U/L) among the groups under study	171

LIST OF PLATES

Contents	Page
Plate (1): X-ray chest and abdomen PAV of a studied patient with suspected NEC	173
Plate (2): X-ray chest and abdomen PAV of a studied patient with pneumatosis intestinalis	174
Plate (3): X-ray chest and abdomen of a studied patient, upright view showing free air under the diaphragm, portal venous gas and pneumatosis	175
Plate (4): X-ray chest and abdomen of a studied patient showing gasless abdomen	176

Abstract

Necrotizing entero-colitis (NEC), a neonatal disease that primarily affects preterm infants is known to be associated with a high mortality rate and is of unknown etiology. Yet, ischemia-reperfusion appears to be an important contributing factor; also oxygen free-radicals produced during reperfusion most-likely contribute to the injury. So, further studies are needed to elucidate whether disruption of the normally high protective levels of SOD in pre-term infants could lead to NEC. This study included; 30 pre-term neonates and ten healthy controls. Their mean gestational age was 32±2weeks. The 30 pre-term patients were further classified into three groups according to Modified Bell-Staging Criteria for NEC: 8 of them had suspected NEC, 15 had proven NEC, and 7 had advanced NEC. The controls were 10 healthy pre-term neonates free of any major disease. The present study revealed that socioeconomic status of the studied patients was below average in 50% in comparison to 20% in the controls. Mean SOD and GPX levels were significantly lower (P<0.01) in patients (275Unit/ml, and 4458U/L; respectively), compared to (519Unit/ ml, and 7783U/L; respectively) in the controls. Both anti-oxidant enzymes activity was lower among patients having bad prognostic parameters especially SOD. The natural levels of the antioxidant enzymes (SOD/ GPX), especially SOD were deficient in cases with NEC compared to the controls. This deficiency correlates with the severity of the disease.

Environmental determinants of perinatal insults such as antenatal care, maternal problems and socioeconomic status were also done and 50% of the patients were in the below average, 433% were average and 6.7% were above average. Multiple pregnancies represented one third of the patients compared to 0% among controls. Antenatal care was