TRANSIENT ELASTOGRAPHY AND YKL-40 AS PREDICTORS OF HEPATIC FIBROSIS IN PATIENTS WITH CHRONIC HEPATITIS C

Thesis

Submitted for the Partial Fulfillment of MD In **Tropical Medicine**

By

Nancy Nagy Shenouda

(M.B.Bch, MSc)

Under Supervision of

Prof. Dr. Sanaa Moharam Kamal

Professor of Tropical Medicine Faculty of Medicine-Ain Shams University

Prof. Dr. Mobarak Mohamed Hussien

Professor of Tropical Medicine Faculty of Medicine, Ain Shams University

Prof. Dr. Laila Nabegh Mohamed

Professor of Histopathology Faculty of Medicine-Ain Shams University

Prof. Dr. Eman Abdel Moniem El Gohary

Professor of Clinical Pathology Faculty of Medicine-Ain Shams University

Dr. Mohammed Omar Khalifa

Lecturer of Tropical Medicine Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First and foremost, thanks to Allah the Almighty to whom I relate any success in achieving any work in my life.

I would like to express my very great appreciation to Professor **Prof. Dr. Sanaa Moharam Kamal**, Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for her precious instructions, expert supervision and valuable comments during the course of this work.

I would like to offer my special thanks and deep appreciation to **Prof. Dr. Mobarak Mohamed Hussien,** Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his help and valuable advice throughout the performance of this work.

I would also like to thank **Prof. Dr. Laila Nabegh Mohamed,** Professor of Histopathology, Faculty of Medicine, Ain Shams University for providing me with valuable and constructive suggestions,.

I would like to Thanks **Prof. Dr. Eman Abdel Moniem El Gohary**, Professor of Clinical Pathology, Ain Shams University, who supported me in my work, and gave me a lot of experience to accomplish this work.

No words can describe the effort and help of **Dr. Mohammed Omar Khalifa**, Lecturer of Tropical Medicine, Ain Shams University, for his kind supervision, wise help guidance and encouragement.

List of Contents

Title	Page	
♦ List of Abbreviations	II	
♦ List of Figures	VII	
♦ List of Tables	VII	
♦ Introduction	1	
♦ Aim of the Work	6	
• Review of the Literature		
• Chapter (1): Hepatic Fibrosis: Pathop	ohysiology	
and Diagnosis	7	
• Chapter (2): Transient Elastography	and Novel	
Imaging Techniques	94	
Chapter (3): The Fibrogenic Markers	:YKL-40 &	
TGF-β1	108	
♦ Patients and Methods	121	
♦ Results	144	
♦ Discussion	182	
♦ Summary		
♦ Conclusion	201	
♦ Recommendations		
♦ References		
Arabic Summary		

List of Abbreviations

A : Activity

ACR: Acute cellular rejection

AIH: Autoimmune hepatitis

AKT: Protein kinase B

ALD: Alcoholic liver disease

ALT: Alanine aminotransferase

ANA: Antinuclear antibody

APRI: AST-to-Platelet Ratio Index

ARFI: Acoustic radiation force imaging

AUC: Area under the ROC curve

BM : Bone marrow

BMI : Body mass index

CHC: Chronic hepatitis C

CI : Confidence interval

CINC: Cytokine-induced neutrophil chemoattractant

CNIs: Calcineurin inhibitors

CT : Computed tomography

CTGF: Connective tissue growth factor

CTL: Cytotoxic T cell

DDAVP: 1-Deamino-8-D-arginine Vasopressin=desmopressin

DMARDs: Disease modifying antirheumatic drugs

ECM: Extracellular matrix

ELISA: Enzyme-Linked Immunosorbent Assay

EMT: Epithelial-mesenchymal transition

ERK1/ERK2: Extracellular signal-regulated kinase-1 and 2

ET-1: Endothelin-1

F : Fibrosis

FS: FibroScan®

GGT: y-glutamyl transferase

HA: Hyaluronic acid

HAI : Histologic Activity Index

HBV: Hepatitis B virus

HCC: Hepatocellular carcinoma

Hel: Hydrochloric acid

HCV: Hepatitis C virus

HIV: Human immunodeficiency virus

HSC: Hepatic stellate cells

hsCRP: hsC-reactive protein

HVPG: Hepatic venous pressure gradient

ICC : Intra-class correlation coefficients

IGF-1: Insulin-like growth factor

IgG: Immunoglobulin G

IL: Interleukin

INR: International normalization ratio

IQR : Interquartile range

KCs: Kupffer cells

LS: Liver stiffness

LSM: Liver stiffness measurement

MAPK: Mitogen-activated protein kinase

CP-1: Chemoattractant protein-1

MCP-1: Monocyte chemotactic protein 1

MFAP-4: Microfibril-associated glycoprotein 4

MHC – class II : Major histocompatibility complex class II

MHC: Major histocompatibility complex

MIP-2: Macrophage inflammatory protein-2

MMF: Mofetile mycophenolate

MMPs: matrix metalloproteinases

MT-MMP: Membrane-bound Matrix Metalloproteinases

NAS : NAFLD Activity Score

NAFLD: Non alcoholic fatty liver disease

NaOH: Sodium Hydroxide

NASH: Non alcoholic steatohepatitis

NC1 and PIVNP: Type IV collagen and its fragments

NK: Natural killer cells

NO: Nitric oxide

NPV : Negative predictive value

NSAIDs: Nonsteroidal anti-inflammatory drugs

OELF: Original European Liver Fibrosis

PBC: Primary biliary cirrhosis

PDGF: Platelet derived growth factor

PI3K: Phosphoinoside-3 kinase

PI3K: Phosphoinoside-3 kinase

PICP: Carboxy -terminal propeptide of procollagen type-I

PICP: Procollagen type I carboxy terminal peptide

PIIINP: Procollagen type III amino-terminal peptide

PON-1: Paraoxonase 1

PPV: Positive predictive value

PT: Prothrombin time

ROS: Reactive oxygen species

SAARDs: Slow acting antirheumatic drugs

SD: Standard deviation

TCR: T-cell receptor;

TE: Transient elastography

TE: Transient elastography

TGF- β : Transforming growth factor beta

Th: T helper;

Th1: Helper T cells with a type 1 cytokine profile;

Th2: Helper T cells with a type 2 cytokine profile;

Th3: Helper T cells with a type 3 cytokine profile

TIMPs: Tissue inhibitors of metalloproteinases

TIPS: Transjugular intrahepatic portosystemic shunt

TNF: Tumor necrosis factor)

TNF-alpha: Tumor necrosis factor alpha

TNF-α: Tumor necrosis factor alpha

US: Ultrasound

VCTE: Vibration-controlled transient elastography

VSMCs: Vascular smooth muscle cells

YKL-40: chitinase-3-like-1 [CHI3L1], human cartilage

glycoprotein-39

List of Figures

Fig. No	Title	Page
Figure (1):	Subendothelial changes during stellar cell activation accompanying liver injur	
Figure (2):	Repertoire of activities of the activate myofibroblast-like HSC	
Figure (3):	Diagrammatic representation of the possible sources of liver myofibroblasts	
Figure (4):	Components of the antiviral immurresponse	
Figure (5):	A scheme depicting various means liver fibrosis diagnostics	
Figure (6):	Specimens of liver biopsies obtained with various sized needles and differing techniques.	ıg
Figure (7):	Probe of fibroscan	96
Figure (8):	FibroScan® operator uses	98
Figure (9):	Positioning of patient for fibroscan	138
Figure (10):	The good window of acquisition localized using A-mode and TM-mode displays.	le
Figure (11):	Box plot representing BMI difference between group A and group B	
Figure (12):	Chronic hepatitis C with mild steatosis by H & E	•
Figure (13):	Chronic hepatitis C with moderate steatos by Haematoxylin and Eosin	

List of Figures (Cont.)

Fig. No	Title Page
Figure (14):	Chronic hepatitis C with moderate Steatosis and fibrosis by Masson's trichrome
Figure (15):	Baseline and follow up Fibroscan values in each group. Boxes represent ranges157
Figure (16):	Fibroscan report corresponding to F1 by Metavir score
Figure (17):	Fibroscan report corresponding to F2 by Metavir score
Figure (18):	Fibroscan report corresponding to F3 by Metavir score
Figure (19):	Fibroscan report corresponding to F4 by Metavir score
Figure (20):	Fibroscan report corresponding to F4 by Metavir score
Figure (21):	Fibroscan report corresponding to F4 by Metavir score
Figure (22):	Baseline and follow up TGF-β1 of group A and B168
Figure (23):	Baseline and follow up YKL-40 of each group
Figure (24):	Correlation between Fibroscan Metavir and histopathology Metavir score at baseline

List of Figures (Cont.)

Fig. No	Title	Page
Figure (25):	Correlation between baseline YKL- serum level and baseline liver histolo Metavir score	gy
Figure (26):	Correlation between baseline YKL- serum level and baseline fibroso Metavir score	an
Figure (27):	Correlation between baseline YKL-serum level and Fibroscan value	
Figure (28):	Correlation between follow up YKL-and follow up Fibroscan value	
Figure (29):	Correlation between basleine TGF- and baseline Fibroscan value	
Figure (30):	Rate of change of Fibroscan, TGF- and YKL-40 from baseline to follow up	•
Figure (31):	Correlation between Histologic Fibro Progression and Fibroscan Change	
Figure (32):	Correlation between Histologic Fibro Progression and YKL-40 rate of hange	
Figure (33):	Correlation between Histologic Fibro Progression and TGF-b Change	