

TANTA UNIVERSITY FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL POWER AND MACHINES

DESIGN AND ANALYSIS OF A TWO PHASE SWITCHED RELUCTANCE MOTOR

A Thesis Submitted by

Eng. Waleed Abd-Allah Ibrahim Afifi

B. Sc. In Electrical Power & Machines, May 2000

For the Award of the Degree of Master of Science In

"Electrical Power and Machines"

Supervisors

Prof. Dr. Mohamed A. EL-Khazendar

Professor of Electrical Machines & Former Dean of the Faculty of Engineering, Tanta University

Prof. Dr. Mahmoud M. Khater

Professor of Power Electronics, Faculty of Engineering, Menoufiya University, Shebin El-Kom

Acknowledgement

I wish to express my most sincere gratitude and appreciation to Professor Dr. *Mohamed El-Khazendar* and a deep gratitude and a warm thank to Professor Dr. *Mahmoud Khater* for his encouragement, constant support, and valuable guidance towards completion of this thesis. I also, convey my acknowledgement with special thanks to all staff members of the department of electrical power and machines faculty of engineering in Tanta University and Menoufiya University for their assistance and useful discussions. I wish to dedicate this work to my parents, sister, my wife, and honey daughter (*Salma*).

Eng. / Waleed A. Afifi

CONTENTS

			Page
Chap	ter 1: IN	TRODUCTION	
1.1.	Switch	ed Reluctance Motor History	1
1.2.	Motor (Construction	1
1.3.	SRM D	Orive System	4
1.4.	SRM P	rinciple of Operation	5
1.5.	Switch	ed Reluctance Motor Configurations	8
1.6.	Advant	ages and Disadvantages of SRM	9
1.7.	Applica	ations of SRM	10
1.8.	Literatu	are Review	12
1.9.	Objecti	ves of the Present Work	17
Chap	ter 2: FL	UXLINKAGE CHARACTERISTICS	
2.1.	Introdu	ction	19
2.2.	Design	Procedures	20
2.3.	_	nt Rotor Designs under consideration	21
2.4.		ination of Flux-linkage Characteristics	22
	2.4.1.	Flux-linkage Characteristic by Direct or Indirect Measurements	23
	2.4.2.	Magnetic Circuit Analysis	24
2.5.		tic Field Formulation	25
2.6.	_	Element Analysis Method	26
	2.6.1.	•	26
	2.6.2.		27
	2.6.3.		30
	2.6.4.	Solving the system equations	31
2.7.	Implem	nentation of Finite Element Analysis	31
2.8.	Flux lir	nkage distribution of different designs	32
	2.8.1.	Fluxlinkage Distribution for Regular Rotor Design	33
	2.8.2.	Fluxlinkage Distribution for One Step Rotor Design	35
	2.8.3.	Fluxlinkage Distribution for Two Steps Rotor	37
	2.8.4.	Design Flux linkage Distribution for Tapared Poter Design	39
2.9.		Fluxlinkage Distribution for Tapered Rotor Design nkage Characteristic for Different Motor designs	39 41
2.9. 2.10.		Forque Characteristic for Different Designs	41
2.10.		Fluxlinkage Properties	48 51
∠.II.	DIVIVI D	TUATHINAYE I TÜDELLES	JI

2.12. Summary 52

Chapte SIMU	ter 3: SRM MATHEMATICAL MODEL AND			
3.1.	Introduction	53		
3.2.	Principle of Energy Conversion within SRM 5			
3.3.	Mathematical Analysis and Torque Production of SRM	56		
	3.3.1. Linear Analysis for Torque Production	56		
	3.3.2. Nonlinear Analysis of Torque Production	58		
3.4.	SRM Torque Production	59		
	3.4.1. Torque Production in an SRM Using Flux Linkage and Rotor Position as State Variables	61		
	3.4.2. Torque Production in an SRM Using Phase Current and Rotor Position as State Variables	64		
3.5.	Computer Simulation Program	68		
3.6.	Summary	75		
Chant	ter 4: RESULTS AND DISCUSSIONS			
-				
4.1.	Introduction	76		
4.2.	Characteristic Curves of the Different four designs	76		
	 4.2.1. Torque – Speed Characteristics 4.2.2. Current – Speed Characteristics 	77 81		
	4.2.2. Current – Speed Characteristics4.2.3. Torque / Current Characteristics	84		
	4.2.3.1 Torque / Current ratio versus Speed Characteristics	84		
	4.2.3.2 Torque / Ampere – Current Characteristics	88		
4.3.	Efficiency of Different Motor Designs	91		
4.4.	Summary	93		
	Summary	75		
Chapt	ter 5: EXPERIMENTAL STUDY			
5.1.	Introduction	94		
5.2.	Construction of the Experimental SRM	94		
5.3.	The Power Converter Circuit	97		
5.4.	The Rotor Position Sensor			
5.5.	Gate Drive Circuit			
5.6.	Gate Drive Circuit 1 Current Measurement 1			
5.7.	Mechanical loading	105		
5.8.	Simulation and experimental results	106		
5.9.	Summary 1			

Chap	oter 6	: CON	CLUSION	IS AND	FUTURE	WORKS
- 1	~					

	Conclusions Future Work	114 115
REFEI	RENCES	116

LIST OF FIGURES

		Pag
Fig (1.1)	Switched Reluctance Motor different configurations	2
Fig (1.2)	Main Parts of the SRM Drive System	٥
Fig (1.3)	Cyclic variation of inductance as rotation occurs	8
Fig (2.1)	Four different air gap geometries under investigation	22
Fig (2.2)	A typical Finite Element Subdivision of an Irregular	27
	Domain	
Fig (2.3)	A Typical Triangular Element	28
Fig (2.4)	Flux distribution of regular rotor design 4/2 SRM at	33
	three different rotor position angles and excitation	
	current 5A.	
Fig (2.5)	Flux distribution for one step rotor design at three	35
	different rotor position angles and excitation current 5A	
Fig (2.6)	Flux distribution for two-steps rotor design at three	37
	different rotor position angles and excitation current 5A	
Fig (2.7)	Flux distribution for tapered rotor design at three	39
	different rotor position angles and excitation current 5A	
Fig (2.8)	Flux linkage characteristic curves for the four different	42
	motor designs as a function of phase excitation current	
	for different rotor position angles	
Fig (2.9)	Flux linkage characteristic curves for the four different	44
	motor designs as a function of rotor position angle for	
	different phase excitation current levels	
Fig (2.10)	Flux linkage 3D characteristic curves for the four	46
	different motor designs as a function of rotor position	
	angle and different phase excitation current levels	
Fig (2.11)	Static torque for the four different motor designs	49
Fig (3.1)	Simple form of switching circuit	54
Fig (3.2)	Torque production in SRM - idealized representation	57
Fig (3.3)	Flux linkage-current characteristics	59
Fig (3.4)	Differential increase in stored magnetic energy	62
Fig (3.5)	Stored energy in the magnetic field for a given rotor	63
118 (5.5)	position	0.0
Fig (3.6)	Differential stored field energy between two rotor	64
-0 (3.0)	positions	
Fig (3.7)	One-to-one mapping between the vertical line and the	66
<i>3</i> (- · ·)	flux linkage	
	$\boldsymbol{\varepsilon}$	

Fig (3.8)	area bounded by the current axis and the curve of flux (linkage versus current			
Fig (3.9)	Change in co-energy as a function of position with a 6			
	constant current.			
Fig (3.10)	Simulation program flowchart	70		
Fig (3.11)	The SIMULINK graphic interface of the main program	72		
	for simulating SRM			
Fig (3.12)	Details of subsystem SRM	73		
Fig (3.13)	Details of subsystem Current and Torque shown in	74		
	Fig(3.12)			
Fig (3.14)	Details of subsystem Phase Current shown in Fig (3.13)	75		
Fig (4.1)	Torque – speed characteristics for all designs at different Cr	78		
Fig (4.2)	Torque – speed characteristics for all designs at Cr=1.1	80		
Fig (4.3)	Current – speed characteristics for all designs at	81		
	different Cr			
Fig (4.4)	Current – speed characteristics for all designs at Cr=1.1	84		
Fig (4.5)	Torque / Current – speed characteristics for all designs	85		
	at different Cr			
Fig (4.6)	Torque / Current – speed characteristics for all designs	87		
	at Cr=1.1			
Fig (4.7)	Torque / Current - Current characteristics for all	88		
	designs at different Cr			
Fig (4.8)	Torque / Current - Current characteristics for all	91		
8(110)	designs at Cr=1.1	-		
Fig (4.9)	Efficiency – Speed Characteristics for all designs	92		
Fig (4.10)	Efficiency – Torque Characteristics for all designs	92		
Fig (4.11)	Efficiency – Current Characteristics for all designs	93		
Fig (5.1)	Stator core lamination of the used induction motor	95		
Fig (5.2)	Stator core lamination of the two phase 4/2 SRM	95		
Fig (5.3)	Rotor lamination of the two phase 4/2 SRM	96		
Fig (5.4)	cross sectional view of the motor structure	97		
Fig (5.5)	Asymmetric half-bridge inverter	98		
Fig (5.6)	Modes of operation of one phase	100		
Fig (5.7)	The Power source	101		
Fig (5.8)	Rotor Position Sensor	102		
Fig (5.9)	Gate Drive Circuit	104		
Fig (5.10)	One channel of the Hall-effect current sensor	105		
Fig (5.11)	predicted position feed back signal	106		
Fig (5.12)	experimental feed back signal	107		

Fig (5.13)	predicted voltage and current for the two phases	107
Fig (5.14)	experimental phase voltage & current wave form	108
Fig (5.15)	experimental current for the two phases	109
Fig (5.16)	Analytically predicted and experimentally recorded torque - speed characteristics at commutation ratios 0.6 and 1.0.	110
Fig (5.17)	Analytically predicted and experimentally recorded current - speed characteristics at commutation ratios 0.6 and 1.0	110
Fig (5.18)	torque /	111
	current - speed characteristics at commutation ratios 0.6 and 1.0	
Fig (5.19)	Analytically predicted and experimentally recorded torque / current - current characteristics at commutation ratios 0.6 and 1.0.	111
Fig (5.20)	overall experimental System	113

SYMBOLS

A	Magnetic vector	potential
---	-----------------	-----------

a Cross section area

B Flux density

C Stator core width
Cr Commutation ratio
D Stator inner diameter
D_o stator outer diameter
D_r Rotor outer diameter

 d_{sh} Shaft diameter e Back emf g Air gap length

g_i Inter polar air gap lengthH The magnetic field intensity

I_{dc} Dc link currenti Phase currentJ Current density

Je Excitation current density

k Phase number L Inductance

 $\begin{array}{ccc} L_a & Axial \ core \ length \\ L_{min} & Minimum \ inductance \\ L_{max} & Maximum \ inductance \\ N_r & Number \ of \ rotor \ poles \\ N_s & Number \ of \ stator \ poles \\ n & Speed \ of \ rotating \ motor \end{array}$

p Number of stator poles per phase

P_d Developed power
P_{cu} Copper losses
P_{in} Input power

P_m Mechanical power P_{mag} Magnetic power pw Pulse width

q Number of phasesR Phase resistance

S The element area

T Torque

T_{av} Average torque

T_{ph} Number of turns per phase

t Time

 $egin{array}{ll} V & Supply \ voltage \ V_k & The \ phase \ voltage \end{array}$

W_{co} Coenergy

 β_r Rotor pole arc

 β_s Stator pole arc

 Ψ Flux linkage

 θ Rotor position angle Extinguish angle

 $\theta_{\rm off}$ Turn off angle

 θ_{on} Trigger angle

 τ_r Rotor pole pitch

 τ_s Stator pole pitch

 ϕ Magnetic flux

 $\omega_{\rm m}$ Rotor speed

 δ Step angle

Summary

This thesis investigates and compares the operating performance of the two phase switched reluctance motor with four different rotor designs having different air gap geometries. An analysis for the magnetic circuit is introduced and a twodimensional finite element procedure to predict the nonlinear flux linkage characteristics for different rotor designs. These characteristic curves are obtained numerically at different rotor angles and different current levels for the four designs under consideration and they are used to predict the static torque characteristics for these designs. A computer simulation procedure is devised to determine the operating performances for the four motor designs based on the predicted flux linkage and static torque characteristics. A comparison is held from the point of view of the torque developed at different speeds, motor efficiency and torque per ampere productivity of the different designs. The two-stepped air gap design proved the superiority over other configurations.

ABSTRACT

The 4/2 pole, 2-phase configuration of switched reluctance motors is characterized by its simple motor construction and simple power electronic circuit topology. This motor is known with different air gap geometries to enhance its starting performance. This thesis investigates the operating performance of this motor type with four different rotor designs having different air gap geometries. These configurations are the regular air gap design, the one step air gap design, the two steps air gap design and the tapered air gap design. A common frame size and similar number of turns per phase are considered for the four different designs. A numerical approach utilizing finite element magnetic circuit analysis method to predict the flux linkage and static torque characteristics for different rotor designs is carried-out. A nonlinear mathematical model is developed for the 4/2 pole, 2-phase SRM and implemented in a series of computer simulation programs based on the data obtained from finite element analysis to predict the operating performance of the four different motor designs. A comparative study is held between the four different designs under investigation from the point of view of torque production, current drawn from the dc mains, torque per ampere capability, and motor efficiency.

The thesis consists of six chapters, list of references and an Arabic summary.

The **first chapter**, introduces an introduction about SRMs. It contains their construction, different configurations and principle of operation. It introduces also their advantages, disadvantages and applications. A literature review for the different topics covered recently by research is also

included. This chapter ends with introducing the main objectives of the present thesis.

In **chapter two**, different motor designs under consideration are introduced. Different methods for determining flux linkage characteristics are discussed. Finite element method for magnetic circuit analysis is introduced and implemented for analyzing the different motor designs under consideration. A sample of flux linkage distributions for all designs is presented along with the flux linkage characteristics as a function of both armature current and rotor position angle. The static torque characteristics are also predicted and presented.

Chapter three is devoted to mathematical modeling and simulation of the SRM designs under consideration. It firstly introduces the principle of energy conversion within an SRM, and then introduces the different approaches for the analysis of SRMs. These approaches are discussed in details and then implemented in a computer simulation program to predict the motor operating performances.

Chapter four presents a comparative study between different motor designs under consideration based on the results obtained from the simulation program. In this chapter torque-speed, current-speed, torque/current-speed and efficiency characteristic curves for different designs are presented and compared. These characteristics are obtained at different duty ratios for motor excitation pulses. A comparison is held from the point of view of the torque developed at different speeds, motor efficiency and torque per ampere productivity of the different designs.

Chapter five introduces an experimental study for the present theses. In this chapter the construction steps of the experimental motor, power converter,

position sensors and gate drivers are presented. A sample of experimental results is presented along with the corresponding simulation results.

Chapter six introduces the main conclusions drawn from the present from the present thesis. Some points are also proposed for future research as an extension for this work.

A list of the relevant references is included at the end of the thesis.

Chapter 1

((Introduction))